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Introduction Conclusions
- . . . Objective . .

O Distributed machine learning has been widely We study learning over distributed features
studied in order to handle exploding amount of We want to develop a method that each where none of the parties shall share the
data. party can share data while individual can not local data.

O We study an important yet less visited be identified from the “shared data”. + We propose the parallel ADMM sharing
distributed learning problem where features are algorithm to solve this challenging problem
vertically partitioned among multiple parties. Method where only intermediate values are

shared, without even sharing model
parameters.

@ Sharing of raw data or model parameters

among parties is prohibited due to privacy We propose an ADMM sharing framework to

concerns. approach risk minimization over distributed ) \é\(/)?]\?:;(;:g?mvc\)’rr: t:r:)en\c/g)r:\llggizﬁit]icggs
features, where each party only needs . : '
Motivating example to share a single value for each sample in ) ;-0 frrttieergi;?etreecr:ttiz;a dri?;[:cpr[[\;?:cr:\)rl;iwfe "
O Firestone and Ford tire controversy the training process. thus minimizing the data thppty L g pt p Y q
Ford collects information about vehicles. leakage risk, and we perturbed this value to © ral?mg ptrr?.ce_rure Oh erive a privacy
Firestone collects information about tires. Vehicles achieve ¢-0 differential privacy. ?’Eirra:sﬁﬁ sv,\;:ox]s thea‘i?ﬁesADMM sharing
can be linked to tires. In 2001, numerous ) : © ,
accidents due to tread separation were reported. Results 2?32&2?;3\%?{5%83iffjﬁ;ir:rl}gfiigiﬁzlsly
Initially both companies blamed each other. It We introduce a novel differentially private ) 'I:lé)rlt\;\armlore,. t:]he d.'ﬁ%regt'?tl ly prlvg.t et.
turned out that it was only Ford Explorers with ADMM sharing algorithm and bound the a %?r' m {j'el ts 0e :‘; pre |c||on
Firestone tires from the Decatur, lllinois plant, in prlyacy guarant_ee with carefully designed IaCCL:r?C% an mhol e ram_e romr?n, yl |
specific situations that had these problems. If noise perturbation. c:ccc?ﬁ ca ut'fef’ while ensurlngta certain feve
found out earlier, much loss could have been or differential privacy guarantee.
avoided. -
I Full features (centralized training) T Full features (centralized training)
However, their data are not shared dueto | - Local features only S e Local features only
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Figure 1: Applying Sensitive User Features to Other Applications
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