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Problem setup

We consider distributed optimization prob-
lems of the form

min
x∈Rd

f (x) := 1
n

nP
i=1
fi(x) , (1)

•n is the number of nodes,
• fi : Rd→ R is a smooth differentiable loss
function composed of data stored on worker i.

Communication Bottleneck

In distributed training, model updates (or gradient
vectors) have to be exchanged in each iteration. Due
to the size of the communicated messages for com-
monly considered deep models (Alistarh et al., 2016),
this represents significant bottleneck of the whole
optimization procedure. To reduce the amount of
data that has to be transmitted, communication
compression is one of the popular approaches.
Considering both practice and theory, compression
operators can be split into two groups: biased and
unbiased.

Definition ("Unbiased")

A randomized mapping C : Rd → Rd is an unbi-
ased compression operator (unbiased compressor)
if there exists δ ≥ 1 such that

E [C(x)] = x, E ‖C(x)‖2 ≤ δ ‖x‖2 , ∀x ∈ Rd.

If this holds, we will for simplicity write C ∈ U(δ).

Definition ("Biased")

A (possibly) randomized mapping C : Rd→ Rd is a
general compression operator (general compres-
sor) if there exists λ > 0 and δ ≥ 1 such that

E
h
‖λC(x)− x‖2i ≤  

1− 1
δ

!
‖x‖2 , ∀x ∈ Rd.

If this holds, we will for simplicity write C ∈ C(δ).

Induced Compressor vs. Error-Feedback (EF) [Example]

Assumptions:
Biased and Unbiased Compressors: C1 ∈ C(δ) and C2 ∈ U(δ).
f is over-parametrized (Vaswani et al., 2019) and µ-quasi convex, i.e.

f ? ≥ f (x) + 〈∇f (x), x? − x〉 + µ

2
‖x? − x‖2 , ∀x ∈ Rd.

where f ? is the optimal solution of f and f ? = f ?i , ∀i ∈ [n].
fi’s are L-smooth.

Construction [on worker i]:
Induced Compressor Error-Feedback
obtain gki [E

h
gki
i

= ∇fi(xk)] obtain gki [E
h
gki
i

= ∇fi(xk)]
∆k
i = ηk[hki + Ck1 (gki − hki )], hki = Ck1 (gki ) ∆k

i = Ck1 (ηkgki + eki )
send ∆k

i to master send ∆k
i to master

[no need to keep track of errors] ek+1
i = ηkgki + eki −∆k

i

Convergence Rates [E
h
f (x̄T )− f ?

i
]:

O
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Contributions

• Induced Compressor. When used with EF
framework, biased compressors (e.g., Top-K) can
often achieve superior performance when
compared to their unbiased counterparts (e.g.,
Rand-K), which is attributed to their low
empirical variance. Our key contribution is the
development of a simple but remarkably effective
alternative (described above), which we argue
leads to better and more versatile methods both in
theory and practice.
•Better Theory for DCSGD. We provide a
new and tighter theoretical analysis of DCSGD
under weaker assumptions.
•Partial Participation. We extend our results
to obtain the first convergence guarantee for
partial participation with arbitrary distributions
over nodes.

Motivational Example
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Figure: Comparison of Top-1 (+ EF) and NU
Rand-1 on Example 1 from Beznosikov et al., 2020.

Numerical Experiments
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Figure: : Comparison of different sparsification
techniques on CIFAR10 with Resnet18.
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