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Abstract

In the last few years, various communication compression techniques have emerged
as an indispensable tool helping to alleviate the communication bottleneck in
distributed learning. However, despite the fact biased compressors often show
superior performance in practice when compared to the much more studied and
understood unbiased compressors, very little is known about them. In this work
we study three classes of biased compression operators, two of which are new, and
their performance when applied to (stochastic) gradient descent and distributed
(stochastic) gradient descent. We show for the first time that biased compressors can
lead to linear convergence rates both in the single node and distributed settings. Our
distributed SGD method enjoys the ergodic rate O (δL exp(−K)/µ + (C+D)/Kµ),
where δ is a compression parameter which grows when more compression is
applied, L and µ are the smoothness and strong convexity constants, C captures
stochastic gradient noise (C = 0 if full gradients are computed on each node)
and D captures the variance of the gradients at the optimum (D = 0 for over-
parameterized models). Further, via a theoretical study of several synthetic and
empirical distributions of communicated gradients, we shed light on why and by
how much biased compressors outperform their unbiased variants, see Appendix G.
Finally, we propose several new biased compressors with promising theoretical
guarantees and practical performance.

1 Introduction

In order to achieve state-of-the-art performance, modern machine learning models need to be trained
using large corpora of training data, and often feature an even larger number of trainable parameters
[1]. The data is typically collected in a distributed manner and stored across a network of edge
devices, as is the case in federated learning [2, 3, 4, 5], or collected centrally in a data warehouse
composed of a large collection of commodity clusters. In either scenario, communication among
the workers is typically the bottleneck. Motivated by the need for more efficient training methods in
traditional distributed and emerging federated environments, we consider optimization problems of
the form

min
x∈Rd

{
f(x) := 1

n

n∑
i=1

fi(x)

}
, (1)

where x ∈ Rd collects the parameters of a statistical model to be trained, n is the number of
workers/devices, and fi(x) is the loss incurred by model x on data stored on worker i. The loss
function fi : Rd → R often has the form fi(x) := Eξ∼Pi

[fξ(x)] , with Pi being the distribution of
training data owned by worker i.
1.1 Distributed optimization. A fundamental baseline for solving problem (1) is (distributed)

gradient descent (GD), with iterations xk+1 = xk − ηk

n

n∑
i=1

∇fi(xk), where ηk > 0 is a stepsize.
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Table 1: Compressors described in Section 3 with membership in B1(α, β), B2(γ, β), B3(δ),U(ζ).

Compressor C Unbiased? α β γ δ ζ
Unbiased random sparsification 3 d/k
Biased random sparsification [NEW] 7 q 1 q 1/q
Adaptive random sparsification [NEW] 7 1/d 1 1/d d
Top-k sparsification [17] 7 k/d 1 k/d d/k

General unbiased rounding [NEW] 3 1
4
sup

[
ak
ak+1

+
ak+1

ak
+ 2
]

Unbiased exponential rounding [NEW] 3 1
4
(b+ 1/b+ 2)

Biased exponential rounding [NEW] 7 (2/b+1)2 2b/b+1 2/b+1 (b+1)2/4b
Natural compression [16] 3 9/8
General exponential dithering [NEW] 3 ζb
Natural dithering [16] 3 ζ2
Top-k + exponential dithering [NEW] 7 k/d ζb k/d dζb/k

Table 2: Complexity results for GD with biased compression. The identity compressor C(x) ≡ x
belongs to all classes with α = β = γ = δ = 1; all three results recover standard rate of GD.

Compressor C ∈ B1(α, β) C ∈ B2(γ, β) C ∈ B3(δ)
Theorem Theorem 11 Theorem 12 Theorem 13

Complexity O
(
β2

α
L
µ log 1

ε

)
O
(
β
γ
L
µ log 1

ε

)
O
(
δLµ log 1

ε

)

Several enhancements to GD have been proposed that can better deal with the communication cost
challenges of distributed environments, including acceleration [6, 7, 8], reducing the number of
communication rounds, and communication compression [9, 10, 11, 12, 13, 14, 15, 16], reducing the
size of communicated messages.
1.2 Contributions. In this paper we contribute to a better understanding of the latter approach to
alleviating the communication bottleneck: communication compression. In particular, we study the
theoretical properties of gradient-type methods which employ biased gradient compression operators,
such as Top-k sparsification [17], or deterministic rounding [18]. Surprisingly, current theoretical
understanding of such methods is very limited. For instance, there is no general theory of such
methods even in the n = 1 case, only a handful of biased compression techniques have been proposed
in the literature, we do not have any theoretical understanding of why biased compression operators
could outperform their unbiased counterparts and when, and there is no good convergence theory for
any gradient-type method with a biased compression in the crucially important n > 1 setting.

In this work we address all of the above problems. In particular, our main contributions are:
(a) We define and study three parametric classes of biased compression operators (see Section 2),
which we denote B1(α, β), B2(γ, β) and B3(δ), the first two of which are new. We prove that they
are alternative parameterization of the same collection of operators (the last two more favorable than
the first), thus highlighting the importance of parametrization and providing further reductions. We
show how is the commonly used class of unbiased compression operators, which we denote U(ζ),
relates to these biased classes. We also study scaling and compositions of such compressors.
(b) We then proceed to give a long list of new and known biased (and some unbiased) compression
operators which belong to the above classes in Section 3. A summary of all compressors considered
can be found in Table 1.
(c) In Section 4 we analyze compressed GD in the n = 1 case for compressors belonging to all three
classes under smoothness and strong convexity assumption. Our theorems generalize existing results
which hold for unbiased operators in a tight manner, and also recover the rate of GD in this regime.
Our linear convergence results are summarized in Table 2.
(d) Finally, we study the important n > 1 setting in Section 5 and argue by giving a counterexample
that a naive application of biased compression to distributed GD might diverge. We then design
a new distributed SGD method equipped with an error-feedback mechanism which can provably
handle biased compressors. In our main result (Theorem 14; also see Table 3) we consider three
learning schedules and iterate averaging schemes to provide three distinct convergence rates. Our
analysis provides the first convergence guarantee for distributed gradient-type method which provably
converges for biased compressors, and we thus solve a major open problem in the literature.
1.3 Related work. There has been extensive work related to compression, mostly focusing on unbi-
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Table 3: Ergodic convergence of distributed SGD with biased compression and error-feedback
(Algorithm 1) for L-smooth and µ-strongly convex functions with K communications (Theorem 14).

Stepsizes Weights Rate
O( 1

k ) O(k) O (A1/K2 + A2/K)

O(1) O(e−k) Õ (A3 exp [−K/A4] + A2/K)
O(1) 1 O (A3/K + A5/

√
K)

ased compressions [10] as these are much easier to analyze. Works concerning biased compressions
show strong empirical results with limited or no analysis [19, 20, 21]. There have been several
attempts trying to address this issue, e.g., [22] provides analysis for quadratics in distributed setting,
[23] gives analysis for momentum SGD with a specific biased compression, but under unreasonable
assumptions, i.e., bounded gradient norm and memory. The first result that obtained linear rate of
convergence for biased compression was done in [24], but only for one node and under bounded
gradient norm assumption, which was later overcome in [25].
1.4 Basic notation and definitions. We use 〈x, y〉 :=

∑d
i=1 xiyi to denote standard inner product

of x, y ∈ Rd, where xi corresponds to the i-th component of x in the standard basis in Rd. This
induces the `2-norm in Rd in the following way ‖x‖2 :=

√
〈x, x〉. We denote `p-norms as ‖x‖p :=

(
∑d
i=1 |xi|p)

1/p for p ∈ (1,∞). By E [·] we denote mathematical expectation. Function f : Rd → R
is L-smooth if it is differentiable and f(y) ≤ f(x)+ 〈∇f(x), y−x〉+ L

2 ‖y − x‖
2
2 ,∀x, y ∈ Rd. It is

µ-strongly convex if it is differentiable and f(y) ≥ f(x)+〈∇f(x), y−x〉+ µ
2 ‖y − x‖

2
2 ,∀x, y ∈ Rd.

2 Biased Compressors: Definitions & Theory

By compression operator we mean a (possibly ramdom) mapping C : Rd → Rd with some constraints.
Typically, literature considers unbiased compression operators C with a bounded second moment, i.e.

Definition 1. We say that C ∈ U(ζ) for ζ ≥ 1 if E [C(x)] = x, E
[
‖C(x)‖22

]
≤ ζ ‖x‖22, ∀x ∈ Rd.

We instead focus on understanding biased compression operators, or “compressors” in short. We now
introduce three classes of biased compressors, the first two are new, which can be seen as natural
extensions of unbiased compressors.
Definition 2. We say that C ∈ B1(α, β) for some α, β > 0 if

α ‖x‖22 ≤ E
[
‖C(x)‖22

]
≤ β〈E [C(x)] , x〉, for all x ∈ Rd. (2)

The second ineq. in (2) implies E
[
‖C(x)‖22

]
≤ β2 ‖x‖22.

Definition 3. We say that C ∈ B2(γ, β) for some γ, β > 0 if

max
{
γ ‖x‖22 ,

1
βE
[
‖C(x)‖22

]}
≤ 〈E [C(x)] , x〉, for all x ∈ Rd. (3)

Definition 4. We say that C ∈ B3(δ) for some δ > 0 if

E
[
‖C(x)− x‖22

]
≤
(

1− 1

δ

)
‖x‖22 , for all x ∈ Rd. (4)

This last definition was also considered in [26, 27]. We now establish several basic properties and
connections between the classes.
Theorem 1 (Equivalence between biased compressors). Let λ > 0 be a free scaling parameter.
If C ∈ B1(α, β), then (i) β2 ≥ α and λC ∈ B1(λ2α, λβ), (ii) C ∈ B2(α, β2) and 1

βC ∈ B3(β2/α).
If C ∈ B2(γ, β), then (i) β ≥ γ and λC ∈ B2(λγ, λβ), (ii) C ∈ B1(γ2, β) and 1

βC ∈ B3(β/γ).
If C ∈ B3(δ), then (i) δ ≥ 1 and (ii) C ∈ B2

(
1
2δ , 2

)
⊆ B1

(
1

4δ2 , 2
)
.

With a proper scaling any unbiased compressor belongs to all the three classes of biased compressors.
Theorem 2 (From unbiased to biased with scaling). If C ∈ U(ζ), then scaled operator λC belongs to

(i) B1(λ2, λζ) if λ > 0, (ii) B2(λ, λζ) if λ > 0, (iii) B3
(

1
λ(2−ζλ)

)
if ζλ ∈ (0, 2).
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3 Biased Compressors: Old and New

We now give some examples of compression operators belonging to the classes B1, B2, B3 and U.
Several of them are new. For a summary, refer to Table 1.

(a) For k ∈ [d] := {1, . . . , d}, the unbiased random (aka Rand-k) sparsification operator is
defined via C(x) := d

k

∑
i∈S xiei, where S ⊆ [d] is the k-nice sampling; i.e., a subset of [d] of

cardinality k chosen uniformly at random, and e1, . . . , ed are the standard unit basis vectors in Rd.
Lemma 3. The Rand-k sparsification operator belongs to U( dk ).

(b) Let S ⊆ [d] be a random set, with pi := Prob(i ∈ S) > 0, ∀i ∈ [d] (such a set is called a proper
sampling [28]). Define biased random sparsification operator via C(x) :=

∑
i∈S

xiei.

Lemma 4. With q := mini pi, the biased random sparsifier belongs to B1(q, 1), B2(q, 1), B3(1/q).

(c) Adaptive random sparsification is defined via C(x) := xiei with probability |xi|
‖x‖1

.

Lemma 5. Adaptive random sparsification operator belongs to B1( 1
d , 1), B2( 1

d , 1), B3(d).

(d) Greedy (aka Top-k) sparsification operator is defined via C(x) :=
∑d
i=d−k+1 x(i)e(i), where

coordinates are ordered by their magnitudes so that |x(1)| ≤ |x(2)| ≤ · · · ≤ |x(d)|.
Lemma 6. Top-k sparsification operator belongs to B1(kd , 1), B2(kd , 1), and B3( dk ).

(e) Let (ak)k∈Z be an increasing sequence of positive numbers with inf ak = 0 and sup ak = ∞.
Then general unbiased rounding is defined as follows: if ak ≤ |xi| ≤ ak+1 for some i ∈ [d], then

C(x)i =

{
sign(xi)ak with probability ak+1−|xi|

ak+1−ak
sign(xi)ak+1 with probability |xi|−ak

ak+1−ak

(5)

Lemma 7. General unbiased rounding operator (5) belongs to U(ζ), where

ζ = 1
4 supk∈Z

(
ak
ak+1

+ ak+1

ak
+ 2
)

Notice that ζ is minimized for exponential roundings ak = bk with some basis b > 1.
(f) Let (ak)k∈Z be defined as in (e). Then general biased rounding is defined via

C(x)i := sign(xi) argmint∈(ak) |t− |xi||, i ∈ [d]. (6)

Lemma 8. General biased rounding operator (6) belongs to B1(α, β), B2(γ, β), and B3(δ), where

β = supk∈Z
2ak+1

ak+ak+1
, γ = infk∈Z

2ak
ak+ak+1

, α = γ2, δ = supk∈Z
(ak+ak+1)

2

4akak+1
.

Remark 1. In the case of exponential rounding ak = bk , we get α = 4
(b+1)2 , β = 2b

b+1 , γ = 2
b+1 ,

δ = (b+1)2

4b . Plugging these parameters into the iteration complexities of Table 2, we find that the

class B3 gives the best iteration complexity as β2

α = b2 > β
γ = b > δ = (b+1)2

4b .

(g) Natural compression operator Cnat [16] is the special case of general unbiased rounding operator
(5) when b = 2. Thus, Cnat ∈ U

(
9
8

)
.

(h) For base b > 1, we define general exponential dithering operator with respect to p-norm and
with s exponential levels 0 < b1−s < b2−s < · · · < b−1 < 1 as follows C(x) := ‖x‖p × sign(x)×
ξ
(
|xi|
‖x‖p

)
, where the random variable ξ(t) for t ∈ [b−u−1, b−u] is set to either b−u−1 or b−u with

probabilities proportional to b−u − t and t− b−u−1 respectively, preserving unbiasedness.
Lemma 9. General exponential dithering operator belongs to U(ζb) with

ζb = 1
4 (b+ 1

b + 2) + d
1
r b1−s min(1, d

1
r b1−s), where r = min(p, 2). (7)

(i) Natural dithering [16] without norm compression is the spacial case of (h) when b = 2.
(j) Top-k combined with exponential dithering. Let Ctop be the Top-k sparsification operatorand
Cdith be general exponential dithering operator with some base b > 1 and parameter ζb from (7).
Define a new compression operator as the composition of these two: C(x) := Cdith(Ctop(x)).

Lemma 10. The composition operator of Top-k sparsification and exponential dithering with base b
belongs to B1(kd , ζb), B2(kd , ζb), B3( dk ζb), where ζb is as in (7).
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4 Gradient Descent with Biased Compression (CGD)

We now consider the unconstrained optimization problem minx∈Rd f(x), where f : Rd → R
is L-smooth and µ-strongly convex. We study the method xk+1 = xk − ηCk(∇f(xk)) , where

Ck : Rd → Rd are (potentially biased) compression operators belonging to one of the classes B1, B2

and B3 studied in the previous sections, and η > 0 is a stepsize. We refer to this method as CGD:
Compressed Gradient Descent.
4.1 Complexity theory. We now establish three theorems, one for each of the three classes B1, B2

and B3. Let Ek := E
[
f(xk)

]
− f(x?), with E0 = f(x0)− f(x?).

Theorem 11. Let C ∈ B1(α, β). Then as long as 0 ≤ η ≤ 2
βL , we have Ek ≤(

1− α
β ηµ(2− ηβL)

)k
E0. If we choose η = 1

βL , then Ek ≤
(

1− α
β2

µ
L

)k
E0.

Theorem 12. Let C ∈ B2(γ, β). Then as long as 0 ≤ η ≤ 2
βL , we have Ek ≤

(1− γη (2− ηβ)L))
k E0. If we choose η = 1

βL , then Ek ≤
(

1− γ
β
µ
L

)k
E0.

Theorem 13. Let C ∈ B3(δ). Then as long as 0 ≤ η ≤ 1
L , we have Ek ≤

(
1− 1

δ ηµ
)k E0. If we

choose η = 1
L , then Ek ≤

(
1− 1

δ
µ
L

)k E0.
The iteration complexity for these results can be found in Table 2. Note that the identity compressor
C(x) ≡ x belongs to B1(1, 1),B2(1, 1), and B3(1), hence all these result exactly recover the rate of
GD. In the first two theorems, scaling the compressor by a positive scalar λ > 0 does not influence
the rate (see Theorem 1).
4.2 Classes B3 and B2 are better than B1. If C ∈ B1(α, β), then by Theorem 1, 1

βC ∈ B3(β
2

α ).

Applying Theorem 13, we get the bound O
(
β2

α
L
µ log 1

ε

)
. This is the same result as that obtained

by Theorem 11. On the other hand, if C ∈ B3(δ), then by Theorem 1, C ∈ B1( 1
4δ2 , 2). Applying

Theorem 11, we get the bound O
(

16δ2 Lµ log 1
ε

)
. This is a worse result than what Theorem 13

offers by a factor of 16δ. Hence, while B1 and B3 describe the same classes of compressors, for the
purposes of CGD it is better to parameterize them as members of B3.

5 Distributed Setting

We now focus attention on a distributed setup with n machines, each of which owns data defining
one loss function fi. Our goal is to minimize the average loss (1).
5.1 Distributed CGD with unbiased compressors (DCGD). Perhaps the most straightforward ex-

tension of CGD to the distributed setting is to consider the method xk+1 = xk−η 1
n

n∑
i=1

Cki (∇fi(xk)).

Indeed, for n = 1 this method reduces to CGD. For unbiased compressors belonging to U(ζ), this
method converges under suitable assumptions on the functions. For instance, if fi are L-smooth and f
is µ-strongly convex, then with a suitable stepsize, the method converges to a O (ηD(ζ−1)/µn) neigh-
borhood of the (necessarily unique) solution x? with the linear rate O ((L/µ + L(ζ−1)/µn) log 1/ε) ,

where D := 1/n
∑n
i=1 ‖∇fi(x?)‖

2
2 [29].

5.2 Failure of DCGD with biased compressors. However, as we now demonstrate by giving a
counter-example, DCGD may fail if the compression operators are allowed to be biased. In the
example below, DCGD used with the Top-1 compressor diverges at an exponential rate.
Example 1. Consider n = d = 3 (see F.1 for an extension to this example) and define

f1(x) = 〈a, x〉2 + 1
4 ‖x‖

2
2 , f2(x) = 〈b, x〉2 + 1

4 ‖x‖
2
2 , f3(x) = 〈c, x〉2 + 1

4 ‖x‖
2
2 ,

where a = (−3, 2, 2), b = (2,−3, 2), c = (2, 2,−3). Then, with the initial point x0 = (t, t, t), t > 0

∇f1(x0) = t
2 (−11, 9, 9), ∇f2(x0) = t

2 (9,−11, 9), ∇f3(x0) = t
2 (9, 9,−11).

Using the Top-1 compressor, we get C(∇f1(x0)) = t
2 (−11, 0, 0), C(∇f2(x0)) = t

2 (0,−11, 0) and
C(∇f3(x0)) = t

2 (0, 0,−11). The next iterate of DCGD is

x1 = x0 − η 1
3

∑3
i=1 C(∇fi(x0)) =

(
1 + 11η

6

)
x0.
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Algorithm 1 Distributed SGD with Biased Compression and Error Feedback

Parameters: Compressors Cki ∈ B3(δ); Stepsizes {ηk}k≥0; Iteration count K
Initialization: Choose x0 ∈ Rd and e0i = 0 for all i
for k = 0, 1, 2, . . . ,K do {In parralel on each machine}

Receive xk from server and perform g̃ki = Cki (eki + ηkgki ), ek+1
i = eki + ηkgki − g̃ki .

Send g̃ki to the server, which aggregates all the updates: xk+1 = xk − 1/n
n∑
i=1

g̃ki

end for
Output: Weighted average of the iterates: xK

Repeated application gives xk =
(
1 + 11η

6

)k
x0, which diverges exponentially fast to +∞ as η > 0.

This example shows that the convergence guarantee cannot be established for problem (1) if Dis-
tributed SGD with biased compressor is used as a solver and one needs to devise a different approach.
5.3 Error Feedback. We show that distributed version of Distributed SGD wtih Error-Feedback [24],
displayed in Algorithm 1, is able to resolve the issue. Moreover, this algorithm allows for the compu-
tation of stochastic gradients. Each step starts with all machines i in parallel computing a stochastic
gradient gki of the form gki = ∇fi(xk)+ξki , where∇fi(xk) is the true gradient, and ξki is a stochastic
error. Then, this is multiplied by a stepsize ηk and added to the memory/error-feedback term eki ,
and subsequently compressed. The compressed messages are communicated and aggregated. The
difference of message we wanted to send and its compressed version becomes stored as ek+1

i for
further correction in the next communication round. The output xK is an ergodic average of the form
xK := 1

WK

∑K
k=0 w

kxk, WK :=
∑K
k=0 w

k.

5.4 Complexity theory. We assume the stochastic error ξki satisfies the following condition.

Assumption 1. Stochastic error ξki is unbiased, i.e. E
[
ξki
]

= 0, and for some constants B,C ≥ 0

E
[∥∥ξki ∥∥22] ≤ B ∥∥∇fi(xk)

∥∥2
2

+ C, for all i ∈ [n], k ≥ 0. (8)

We can now state the main result of this section. To the best of our knowledge, this was an open
problem: we are not aware of any convergence results for distributed optimization that tolerate general
classes of biased compression operators and have reasonable assumptions on the stochastic gradient.
Theorem 14 (Main). Let {xk}k≥0 denote the iterates of Algorithm 1 for solving problem (1), where
each fi is L-smooth and µ-strongly convex. Let x? be the minimizer of f and let f? := f(x?) and
D := 1

n

∑n
i=1 ‖∇fi(x?)‖

2
2 . Assume the compression operator used by all nodes is in B3(δ). Then

we have the following convergence rates under three different stepsize and iterate weighting regimes:
(i) O(1/k) stepsizes & O(k) weights. Let ηk = 4/µ(κ+k) be the stepsizes and wk = κ + k be the
weights for all k ≥ 0, where κ = 56(2δ +B)L/µ. Then

E
[
f(x̄K)

]
− f? = O (A1/K2 + A2/K) ,

where A1 := L2(2δ+B)2/µ
∥∥x0 − x?∥∥2

2
and A2 := C

(
1+

1
n

)
+D(2B/n+3δ)/µ.

(ii) O(1) stepsizes & O(e−k) weights. Let ηk = η ≤ 1
14(2δ+B)L be the stepsizes and wk =

(1− µη/2)−(k+1) be the weights for all k ≥ 0. Then

E
[
f(x̄K)

]
− f? = Õ (A3 exp [−K/A4] + A2/K) ,

where A3 := L(2δ +B)
∥∥x0 − x?∥∥2

2
and A4 := 28L(2δ+B)/µ.

(iii) O(1) stepsizes & equal weights. Let ηk = η ≤ 1
14(2δ+B)L be the stepsizes and wk = 1 be the

weights for all k ≥ 0. Then, letting A5 :=
√
C (1 + 1/n) +D (2B/n + 3δ)

∥∥x0 − x?∥∥
2
,

E
[
f(x̄K)

]
− f? = O (A3/K + A5/

√
K) .

Experimental evaluation can be found in Appendix A.
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Figure 1: Comparison of empirical variance ‖C(x)− x‖22 / ‖x‖
2
2 during training procedure of

ResNet18, GoogleNet, and VGG19 on CIFAR10 dataset for two pairs of methods–deterministic with
classic/unbiased Cnat and Top-k with Rand-k, where k = 1/5d.

A Experiments

We conduct several experiments to support our theoretical results. We implement all methods in
Python 3.7 using Pytorch [32] and run on a machine with 24 Intel(R) Xeon(R) Gold 6146 CPU @
3.20GHz cores, GPU @GeForce GTX 1080 Ti with memory 11264 MB (Cuda 10.1).

As biased compressions were already shown to perform better in distributed settings [14, 12], we
rather focus on the reasoning why this is the case. We conduct simulated experiments on one machine
which enable us to do rapid direct comparisons against the prior methods. Another issue is that
for many methods, there is no public implementation available, which makes it hard to do a fair
comparison in distributed settings, thus we focus on simulated experiments.

Motivated by our theoretical results in Section G (Appendix), we show that similar behaviour can
be seen in the empirical variance of gradients. We run 2 sets of experiments with Resnet18 on
CIFAR10 dataset. In Figure 1, we display empirical variance, which is obtained by running a training
procedure with specific compression. We compare unbiased and biased compressions with the same
communication complexities–deterministic with classic/unbiased Cnat and Top-k with Rand-k with k
to be 1/5 of coordinates. One can clearly see, that there is a gap in empirical variance between biased
and unbiased methods, similar to what we have shown in theory, see Section G.

As the next experiment, we further show that our predicted theoretical behaviour matches the actual
performance observed in practice. We run two regression experiments optimized by gradient descent
with step-size η = 1

L . We use a slightly adjusted version of Theorem 13

f(xk)− f(x?)

f(x0)− f(x?)
≤

k∏
i=1

(
1− µ

Lδi

)
,

where

1− 1

δi
=

∥∥C(∇f(xi))−∇f(xi)
∥∥2
2

‖∇f(xi)‖22
.

Note that this is the direct consequence of our analysis. We apply this property to display the
theoretical convergence. Firstly, we randomly generate random square matrix A of dimension 100
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where it is constructed in the following way, we sample random diagonal matrix D, which elements
are independently sampled from the uniform distribution (1, 10), (1, 100), and (1, 1000), respectively.
A is then constructed using Q>DQ, where P = QR is a random matrix and QR is obtained using
QR-decomposition. The label y is generated the same way from the uniform distribution (0, 1). The
optimization objective is then

min
x∈Rd

x>Ax− y>x.

For the second experiment, we run standard linear regression on scikit-learn datasets– Boston and
Diabetes. As the preprocessing step, we first do data normalization.
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Figure 2: Theoretical vs. Practical Convergence of Compressed Gradient Descent on Quadratics
problem with different condition number κ for Top-5 and Rand-5 compression operators.
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Figure 3: Theoretical vs. Practical Convergence of Compressed Gradient Descent on Linear Regres-
sion problem for Boston and Diabetes datasets with Top-5 and Rand-5 compression operators.

Looking into Figures 2 and 3, one can clearly see that as predicted by our theory, biased compression
with less empirical variance leads to better convergence in practice and the gap almost matches the
improvement as predicted by our theory.

The next experiment shows the need of error-feedback for methods with biased compression operators.
Based on Example 1, error feedback is necessary to prevent divergence from the optimal solution.
Figure 4 displays training/test loss and accuracy for VGG19 on CIFAR10 with data equally distributed
among 4 nodes. We use plain SGD with a default step size equal to 0.01 for all methods, i.e. Top-5
with and without error feedback, Rand-5 and no compression. As suggested by the counterexample,
not using error feedback can really hurt the performance when biased compressions are used. Also
note, that performance of Rand-5 is significantly worse than Top-5.

In Section 3 we gave a new biased compression operator, where we combined Top-k sparsification
operator with the general exponential dithering. Consider the composition operator with natural
dithering, i.e., with base b = 2. We showed that it belongs to B1(kd ,

9
8 ), B2(kd ,

9
8 ) and B3( 9d

8k ).
Figure 6 empirically confirms that it attains the lowest compression parameter δ ≥ 1 among all
other known compressors (see (4)). Furthermore, the iteration complexity O

(
δLµ log 1

ε

)
of CGD for

C ∈ B3(δ) implies that it enjoys fastest convergence.

We also conclude an experiment which shows its superiority against current state-of-the-art for low
bandwidth approach Top-k for some small k. Figure 5 shows comparison of 5 methods–Top-k,
Rand-k, natural dithering, Top-k combined with natural dithering and plain SGD. We use 2 levels
with infinity norm for natural dithering and k = 5 for sparsification methods. For all compressors,
we train VGG11 on CIFAR10 using plain SGD as an optimizer with default step size 0.01. We can
see that adding natural dithering after Top-k has the same effect as the natural dithering comparing
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Figure 4: Training/Test loss and accuracy for VGG19 on CIFAR10 distributed among 4 nodes for 4
different compression operators.
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Figure 5: Training loss and test accuracy for VGG11 on CIFAR10 distributed among 4 nodes for 5
different compression operators.

to no compression, which is a significant reduction in communications without almost no effect
on convergence or generalization. Using this intuition, one can come to the conclusion that Top-k
with natural dithering is the best compression operator for any bandwidth, where we adjust to given
bandwidth by adjusting k. This exactly matches with our previous theoretical variance estimates
displayed in Figure 6.

Next, we compare two sparsification methods and show the significant empirical advantage of greedy
sparsifier against random sparsifier, where we assume that coordinates of to-be-compressed vector
are i.i.d. Gaussian random variables. We compare the savings sktop and skrnd of these compressors.
For random sparsification, we have

E
[
skrnd(x)

]
= k · (σ2 + µ2),

where µ and σ2 are the mean and variance of the Gaussian distribution. For computing E
[
sktop(x)

]
,

we use the probability density function of k-th order statistics (see e.g. [33]). Table 4 shows that Top-3
and Top-5 sparsifiers “save” 3×–40× more information in expectation and the factor grows with

the dimension. Next we compare normalized variances
ωk

top(x)

‖x‖22
and ωk

rnd(x)

‖x‖22
for randomly generated

Gaussian vectors. In an attempt to give a dimension independent comparison, we compare them
against the average number of encoding bits per coordinate, which is quite stable with respect to the
dimension. Figure7 reveals the superiority of greedy sparsifier against the random one. In addition to
assuming the gradient distribution, we obtained various gradient distributions via logistic regression
(mushrooms LIBSVM dataset) and least squares. The second moments, i.e. energy “savings”, were
calculated using formula for density function of k-order statistics, see [33] for reference. We conclude
experiments for Top-5 and Rand-5, see Figure 8 for details.

B Basic Facts and Inequalities

B.1 Strong convexity

Function f is strongly convex on Rd when it is continuously differentiable and there is a constant
µ > 0 such that the following inequality holds:

µ

2
‖x− y‖22 ≤ f(x)− f(y)− 〈∇f(y), x− y〉, ∀x, y ∈ Rd. (9)

B.2 Smoothness

Function f is called L-smooth in Rd with L > 0 when it is differentiable and its gradient is
L-Lipschitz continuous, i.e.

‖∇f(x)−∇f(y)‖2 ≤ L ‖x− y‖2 , ∀x, y ∈ Rd.
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Figure 6: Comparison of various compressors with respect to the parameter δ ≥ 1 in log10−scale
and the number of encoding bits used for each coordinate on average. Each point/marker represents a
single d = 104 dimensional vector x drawn from Gaussian distribution and then compressed by the
specified operator.

Table 4: Information savings of greedy and random sparsifiers for k = 3 and k = 5.

Top-3 Top-5

d 102 103 104 105 102 103 104 105

N (0; 1) 3 · (σ2 + µ2) = 3 5 · (σ2 + µ2) = 5

E
[
sktop(x)

]
18.65 31.10 43.98 57.08 27.14 47.70 69.07 90.85

N (2; 1) 3 · (σ2 + µ2) = 15 5 · (σ2 + µ2) = 25

E
[
sktop(x)

]
53.45 75.27 95.81 115.53 81.60 118.56 153.13 186.22

If convexity is assumed as well, then the following inequalities hold:

1

2L
‖∇f(x)−∇f(y)‖22 ≤ f(x)− f(y)− 〈∇f(y), x− y〉, ∀x, y ∈ Rd (10)

By plugging y = x∗ to (10), we get

‖∇f(x)‖22 ≤ 2L(f(x)− f(x∗)), ∀x ∈ Rd. (11)

B.3 Useful inequalities

For all a, b, x1, . . . , xn ∈ Rd and ξ > 0 the following inequalities holds:

2〈a, b〉 ≤
‖a‖22
ξ

+ ξ ‖b‖22 , (12)

‖a+ b‖22 ≤
(

1 +
1

ξ

)
‖a‖22 + (1 + ξ) ‖b‖22 , (13)

∥∥∥∥∥
n∑
i=1

xi

∥∥∥∥∥
2

2

≤ n ·
n∑
i=1

‖xi‖22 . (14)
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Figure 7: The comparison of Top-k and Rand-k sparsifiers w.r.t. normalized variance and the number
of encoding bits used for each coordinate on average. Each point/marker represents a single d = 104

dimensional vector drawn form Gaussian distribution and then compressed by the specified operator.
Plots for different d look very similar. Notice that, for random sparsification the normalized variance
is perfectly linear with respect to the number of bit per coordinate. Letting b be the total number of
bits to encode the compressed vector (say in binary32 system), the normalized variance produced by
random sparsifier is almost 1− b/d

32 . However, greedy sparsifier achieves exponentially lower variance
≈ 0.86b/d utilizing the same amount of bits.
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Figure 8: Calculations of the Rand-5 and Top-5 energy “saving” for practical gradient distributions
((a),(b),(c): quadratic problem, (d): logistic regression). The results of Top-5 are 3–5× better.

C Proofs for Section 2

C.1 Lemma

Lemma 15. For any x ∈ Rd, if E
[
‖C(x)‖22

]
≤ β〈E [C(x)] , x〉, then

E
[
‖C(x)‖22

]
≤ β2 ‖x‖22 . (15)

Proof. Fix any x ∈ Rd. Applying Jensen’s inequality, the second inequality in (2) and Cauchy-
Schwarz, we get

‖E [C(x)]‖22 ≤ E
[
‖C(x)‖22

] (2)
≤ β〈E [C(x)] , x〉 ≤ β ‖E [C(x)]‖2 ‖x‖2 . (16)

If E [C(x)] 6= 0, this implies ‖E [C(x)]‖2 ≤ β ‖x‖2. Plugging this back into (16), we get (15). If

E [C(x)] = 0, then from (2) we see that E
[
‖C(x)‖22

]
= 0, and (15) holds trivially.

C.2 Proof of Theorem 1

Proof. Case C ∈ B1(α, β):

14



(i) Let us choose any x 6= 0 and observe that (2) implies that E [C(x)] 6= 0. Further, from (2)
we get the bounds

E
[
‖C(x)‖22

]
〈E [C(x)] , x〉

≤ β, α ≤
E
[
‖C(x)‖22

]
‖x‖22

.

Finally,

β2 ≥

E
[
‖C(x)‖22

]
〈E [C(x)] , x〉

2

≥
E
[
‖C(x)‖22

]
E
[
‖C(x)‖22

]
‖E [C(x)]‖22 ‖x‖

2
2

≥ α
E
[
‖C(x)‖22

]
‖E [C(x)]‖22

≥ α,

where the second inequality is due to Cauchy-Schwarz, and the last inequality follows by
applying Jensen inequality.

The scaling property λC ∈ B1(αλ2, βλ) follows directly from (2).

(ii) In view of (i), λC ∈ B1(λ2α, λβ). If we choose λ ≤ 2
β , then

E
[
‖λC(x)− x‖22

]
= E

[
‖λC(x)‖22

]
− 2〈E [λC(x)] , x〉+ ‖x‖22

(2)
≤ (βλ− 2)〈E [λC(x)] , x〉+ ‖x‖22
(2)
≤ (βλ− 2)

αλ2

βλ
‖x‖22 + ‖x‖22

(2)
≤

(
αλ2 − 2

α

β
λ+ 1

)
‖x‖22 .

Minimizing the above expression in λ, we get λ = 1
β , and the result follows.

Case C ∈ B2(γ, β).

(i) Using (3) we get

γ ≤ 〈E [C(x)] , x〉
‖x‖22

≤
E
[
‖C(x)‖22

]
√

E
[
‖C(x)‖22

]
‖x‖22

≤ β 〈E [C(x)] , x〉√
E
[
‖C(x)‖22

]
‖x‖22

≤ β,

where the first and third inequalities follow from (3) and the third and the last from Cauchy-
Schwarz inequality with Jensen inequality.

The scaling property λC ∈ B2(λγ, λβ) follows directly from (3).

(ii) If C ∈ B2(γ, β), then E
[
‖C(x)‖22

]
≤ β〈E [C(x)] , x〉 and

γ2 ‖x‖42
(3)
≤ 〈E [C(x)] , x〉2 ≤ ‖E [C(x)]‖22 ‖x‖

2
2 ≤ E

[
‖C(x)‖22

]
‖x‖22 ,

where the second inequality is Cauchy-Schwarz, and the third is Jensen. Therefore, C ∈
B1(γ2, β).

Further, for any λ > 0, we get

E
[
‖λC(x)− x‖22

]
= E

[
‖λC(x)‖22

]
− 2〈E [λC(x)] , x〉+ ‖x‖22

= λ2E
[
‖C(x)‖22

]
− 2λ〈E [C(x)] , x〉+ ‖x‖22

(3)
≤ (λβ − 2)λ〈E [C(x)] , x〉+ ‖x‖22 .

If we choose λ = 1
β , then we can continue as follows:

E
[
‖λC(x)− x‖22

]
≤ − 1

β
〈E [C(x)] , x〉+ ‖x‖22

(3)
≤

(
1− γ

β

)
‖x‖22 ,
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whence 1
βC ∈ B3(β/γ).

Case C ∈ B3(δ).

(i) Pick x 6= 0. Since 0 ≤ E
[
‖C(x)− x‖22

]
≤
(
1− 1

δ

)
‖x‖22 and we assume δ > 0, we must

necessarily have δ ≥ 1.

(ii) If C ∈ B3(δ) then

E
[
‖C(x)‖22

]
− 2 〈E [C(x)] , x〉+

1

δ
‖x‖22 ≤ 0,

which implies that
1

2δ
‖x‖22 ≤ 〈E [C(x)] , x〉 and E

[
‖C(x)‖22

]
≤ 2 〈E [C(x)] , x〉 .

Therefore, C ∈ B2
(

1
2δ , 2

)
⊆ B1

(
1

4δ2 , 2
)
.

C.3 Proof of Theorem 2

Proof. Let C ∈ U(ζ).

• Given any λ > 0, consider the scaled operator λC. We have

λ2 ‖x‖22 = ‖E [λC(x)]‖22 ≤ E
[
‖λC(x)‖22

]
≤ λ2ζ ‖x‖22 = λζ〈E [λC(x)] , x〉,

whence C ∈ B1(λ2, λζ).

• Given any λ > 0, consider the scaled operator λC. We have

λ ‖x‖22 = 〈E [λC(x)] , x〉,

E
[
‖λC(x)‖22

]
≤ λ2ζ ‖x‖22 = λζ〈E [λC(x)] , x〉,

whence λC ∈ B2(λ, λζ).

• Given λ > 0 such that λζ < 2, consider the scaled operator λC. We have

E
[
‖λC(x)− x‖22

]
= E

[
‖λC(x)‖22

]
− 2〈E [λC(x)] , x〉+ ‖x‖22

≤ (ζλ2 − 2λ+ 1) ‖x‖22

whence λC ∈ B3
(

1
λ(2−ζλ)

)
.

D Proofs for Section 3

D.1 Proof of Lemma 3: Unbiased Random Sparsification

From the definition of k-nice sampling we have pi := Prob (i ∈ S) = k
d . Hence

E [C(x)] =
d

k
E

[∑
i∈S

xiei

]
=
d

k

d∑
i=1

pixiei =

d∑
i=1

xiei = x,

E
[
‖C(x)‖22

]
=
d2

k2
E

[∑
i∈S

x2i

]
=
d2

k2

d∑
i=1

pix
2
i =

d

k

d∑
i=1

x2i =
d

k
‖x‖22 ,

which implies C ∈ U( dk ).
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D.2 Proof of Lemma 4: Biased Random Sparsification

Let S ⊆ [d] be a proper sampling with probability vector p = (p1, . . . , pd), where pi := Prob(i ∈
S) > 0 for all i. Then

E [C(x)] = Diag (p)x =

d∑
i=1

pixiei and E
[
‖C(x)‖22

]
=

d∑
i=1

pix
2
i .

Letting q := mini pi, we get

q ‖x‖22 ≤
d∑
i=1

pix
2
i = E

[
‖C(x)‖22

]
= 〈E [C(x)] , x〉 .

So, C ∈ B1(q, 1) and C ∈ B2(q, 1). For the third class, note that

E
[
‖C(x)− x‖22

]
=

d∑
i=1

(1− pi)x2i ≤ (1− q) ‖x‖22 .

Hence, C ∈ B3( 1
q ).

D.3 Proof of Lemma 5: Adaptive Random Sparsification

From the definition of the compression operator, we have

E
[
‖C(x)‖22

]
= E

[
x2i
]

=

d∑
i=1

|xi|
‖x‖1

x2i =
‖x‖33
‖x‖1

,

E [〈C(x), x〉] = E
[
x2i
]

=
‖x‖33
‖x‖1

,

whence β = 1. Furthermore, by Chebychev’s sum inequality, we have

1
d2 ‖x‖1 ‖x‖

2
2 =

(
d∑
i=1

1
d |xi|

)(
d∑
i=1

1
dx

2
i

)
≤

d∑
i=1

1
d |xi|x

2
i = 1

d ‖x‖
3
3 ,

which implies that α = 1
d , δ = d. So, C ∈ B1( 1

d , 1), C ∈ B2( 1
d , 1), and C ∈ B3(d).

D.4 Proof of Lemma 6: Top-k sparsification

Clearly, ‖C(x)‖22 =
∑d
i=d−k+1 x

2
(i) and ‖C(x)− x‖22 =

∑d−k
i=1 x

2
(i). Hence

k

d
‖x‖22 ≤ ‖C(x)‖22 = 〈C(x), x〉 ≤ ‖x‖22 , ‖C(x)− x‖22 ≤

(
1− k

d

)
‖x‖22 .

So, C ∈ B1(kd , 1), C ∈ B2(kd , 1), and C ∈ B3( dk ).

D.5 Proof of Lemma 7: General Unbiased Rounding

The unbiasedness follows immediately from the definition (5)

E [C(x)] =

d∑
i=1

E [C(x)i] ei =

d∑
i=1

sign(xi)

(
ak
ak+1 − |xi|
ak+1 − ak

+ ak+1
|xi| − ak
ak+1 − ak

)
ei =

d∑
i=1

xiei = x.

(17)

Since the rounding compression operator C applies to each coordinate independently, without loss of
generality we can consider the compression of scalar values x = t > 0 and show that E

[
C(t)2

]
≤

ζ · t2. From the definition we compute the second moment as follows

E
[
C(t)2

]
= a2k

ak+1 − t
ak+1 − ak

+a2k+1

t− ak
ak+1 − ak

= (ak+ak+1)t−akak+1 = t2 +(t−ak)(ak+1− t),
(18)
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from which
E
[
C(t)2

]
t2

= 1 +
(

1− ak
t

)(ak+1

t
− 1
)
, ak ≤ t ≤ ak+1. (19)

Checking the optimality condition, one can show that the maximum is achieved at

t∗ =
2akak+1

ak + ak+1
=

2
1
ak

+ 1
ak+1

,

which being the harmonic mean of ak and ak+1, is in the range [ak, ak+1]. Plugging it to the
expression for variance we get

E
[
C(t∗)2

]
t2∗

= 1 +
1

4

(
1− ak

ak+1

)(
ak+1

ak
− 1

)
=

1

4

(
ak
ak+1

+
ak+1

ak
+ 2

)
.

Thus, the parameter ζ for general unbiased rounding would be

ζ = sup
t>0

E
[
C(t)2

]
t2

= sup
k∈Z

sup
ak≤t≤ak+1

E
[
C(t)2

]
t2

=
1

4
sup
k∈Z

(
ak
ak+1

+
ak+1

ak
+ 2

)
≥ 1.

D.6 Proof of Lemma 8: General Biased Rounding

From the definition (6) of compression operator C we derive the following inequalities

inf
k∈Z

(
2ak

ak + ak+1

)2

‖x‖22 ≤ ‖C(x)‖22,

‖C(x)‖22 ≤ sup
k∈Z

2ak+1

ak + ak+1
〈C(x), x〉,

inf
k∈Z

2ak
ak + ak+1

‖x‖22 ≤ 〈C(x), x〉,

which imply that C ∈ B1(α, β) and C ∈ B2(γ, β), with

β = sup
k∈Z

2ak+1

ak + ak+1
, γ = inf

k∈Z

2ak
ak + ak+1

, α = γ2.

For the third class B3(δ), we need to upper bound the ratio ‖C(x)− x‖22 / ‖x‖
2
2. Again, as C applies

to each coordinate independently, without loss of generality we consider the case when x = t > 0 is
a scalar. From definition (6), we get

(C(t)− t)2

t2
= min

[(
1− ak

t

)2
,
(

1− ak+1

t

)2]
, ak ≤ t ≤ ak+1. (20)

It can be easily checked that
(
1− ak

t

)2
is an increasing function and

(
1− ak+1

t

)2
is a decreasing

function of t ∈ [ak, ak+1]. Thus, the maximum is achieved when they are equal. In contrast to
unbiased general rounding, it happens at the middle of the interval,

t∗ =
ak + ak+1

2
∈ [ak, ak+1].

Plugging t∗ into (20), we get

(C(t∗)− t∗)2

t2∗
=

(
ak+1 − ak
ak+1 + ak

)2

.

Given this, the parameter δ can be computed from

1− 1

δ
= sup

k∈Z
sup

ak≤t≤ak+1

(C(t)− t)2

t2
= sup

k∈Z

(
ak+1 − ak
ak+1 + ak

)2

,

which gives

δ = sup
k∈Z

(ak + ak+1)
2

4akak+1
≥ 1,

and C ∈ B3(δ).
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D.7 Proof of Lemma 9: General Exponential Dithering

The proof goes with the same steps as in Theorem 4 of [16]. To show the unbiasedness of C, first we
show the unbiasedness of ξ(t) for t ∈ [0, 1] in the same way as (17) was done. Then we note that

E [C(x)] = sign(x)× ‖x‖p × E

[
ξ

(
|x|
‖x‖p

)]
= sign(x)× ‖x‖p ×

(
|x|
‖x‖p

)
= x.

To compute the parameter ζ, we first estimate the second moment of ξ as follows:

≤ 1

(
|xi|
‖x‖p

≥ b1−s
)
· 1

4

(
b+

1

b
+ 2

)
x2i
‖x‖2p

+ 1

(
|xi|
‖x‖p

< b1−s
)
· |xi|
‖x‖p

b1−s

≤ 1

4

(
b+

1

b
+ 2

)
x2i
‖x‖2p

+ 1

(
|xi|
‖x‖p

< b1−s
)
· |xi|
‖x‖p

b1−s .

Then we use this bound to estimate the second moment of compressor C:

E
[
‖C(x)‖22

]
= ‖x‖2p

d∑
i=1

E

[
ξ

(
|xi|
‖x‖p

)2
]

≤ ‖x‖2p
d∑
i=1

(
1

4

(
b+

1

b
+ 2

)
x2i
‖x‖2p

+ 1

(
|xi|
‖x‖p

< b1−s
)
· |xi|
‖x‖p

b1−s
)

=
1

4

(
b+

1

b
+ 2

)
‖x‖22 +

d∑
i=1

1

(
|xi|
‖x‖p

< b1−s
)
· |xi|‖x‖pb1−s

≤ 1

4

(
b+

1

b
+ 2

)
‖x‖22 + min

(
‖x‖1‖x‖pb1−s, d‖x‖2pb2−2s

)
≤ 1

4

(
b+

1

b
+ 2

)
‖x‖22 + min

(
d

1/2‖x‖2‖x‖pb1−s, d‖x‖2pb2−2s
)

≤
[

1

4

(
b+

1

b
+ 2

)
+ d

1/rb1−s min
(

1, d
1/rb1−s

)]
‖x‖22

= ζb ‖x‖22 ,

where r = min(p, 2) and Hölder’s inequality is used to bound ‖x‖p ≤ d1/p−1/2 ‖x‖2 in case of
0 ≤ p ≤ 2 and ‖x‖p ≤ ‖x‖2 in the case p ≥ 2.

D.8 Proof of Lemma 10: Top-k Combined with Exponential Dithering

From the unbiasedness of general dithering operator Cdith we have

E [C(x)] = E [Cdith(Ctop(x))] = Ctop(x),

from which we conclude 〈E [C(x)] , x〉 = 〈Ctop(x), x〉 = ‖Ctop(x)‖22. Next, using Lemma 9 on
exponential dithering we get

E
[
‖C(x)‖22

]
≤ ζb · ‖Ctop(x)‖22 = ζb · 〈E [C(x)] , x〉,

which implies β = ζb. Using Lemma 6 we show γ = k
d as 〈E [C(x)] , x〉 = ‖Ctop(x)‖22 ≥

k
d ‖x‖

2
2.

Utilizing the derivations (18) and (19) it can be shown that E
[
‖Cdith(x)‖22

]
≥ ‖x‖22 and therefore

E
[
‖C(x)‖22

]
≥ ‖Ctop(x)‖22 ≥

k
d ‖x‖

2
2 .

Hence, α = k
d . To compute the parameter δ we use Theorem 1, which yields δ = β

γ = d
k ζb.
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E Proofs for Section 4

We now perform analysis of CGD for compression operators in B1, B2 and B3, establishing Theo-
rems 11, 12 and 13, respectively.

E.1 Analysis for C ∈ B1(α, β)

Lemma 16. Assume f is L-smooth. Let C ∈ B1(α, β). Then as long as 0 ≤ η ≤ 2
βL , for each

x ∈ Rd we have

E [f (x− ηC(∇f(x)))] ≤ f(x)− αη
(

1− ηβL

2

)
‖∇f(x)‖22 .

Proof. Letting g = ∇f(x), we have1

E [f (x− ηC(g))] ≤ E

[
f(x) + 〈g,−ηC(g)〉+

L

2
‖−ηC(g)‖22

]
= f(x)− η〈E [C(g)] , g〉+

η2L

2
E
[
‖C(g)‖22

]
(2)
≤ f(x)− η〈E [C(g)] , g〉+

η2βL

2
〈E [C(g)] , g〉

= f(x)− η
(

1− ηβL

2

)
〈E [C(g)] , g〉

(2)
≤ f(x)− α

β
η

(
1− ηβL

2

)
‖g‖22 .

Proof of Theorem 11

Proof. Since f is µ-strongly convex,
∥∥∇f(xk)

∥∥2
2
≥ 2µ(f(xk) − f(x?)). Combining this with

Lemma 16 applied to x = xk and g = ∇f(xk), we get

E
[
f
(
xk − ηC(∇f(xk))

)]
− f(x?) ≤ f(xk)− f(x?)− α

β
ηµ (2− ηβL) (f(xk)− f(x?))

=

(
1− α

β
ηµ (2− ηβL)

)
(f(xk)− f(x?)).

E.2 Analysis for C ∈ B2(γ, β)

Lemma 17. Assume f is L-smooth. Let C ∈ B2(γ, β). Then as long as 0 ≤ η ≤ 2
βL , for each

x ∈ Rd we have

E [f (x− ηC(∇f(x)))] ≤ f(x)− γη
(

1− ηβL

2

)
‖∇f(x)‖22 .

1Alternatively, we can write

E [f (x− ηC(g))] ≤ f(x)− η〈E [C(g)] , g〉+ η2L

2
E
[
‖C(g)‖22

]
(2)
≤ f(x)− η

β
E
[
‖C(g)‖22

]
+
η2L

2
E
[
‖C(g)‖22

]
= f(x)− η

β

(
1− ηβL

2

)
E
[
‖C(g)‖22

]
(2)
≤ f(x)− α

β
η

(
1− ηβL

2

)
‖g‖22 .

Bot approaches lead to the same bound.
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Proof. Letting g = ∇f(x), we have

E [f (x− ηC(g))] ≤ E

[
f(x) + 〈g,−ηC(g)〉+

L

2
‖−ηC(g)‖22

]
= f(x)− η 〈E [C(g)] , g〉+

η2L

2
E
[
‖C(g)‖22

]
(3)
≤ f(x)− η

(
1− ηβL

2

)
〈E [C(g)] , g〉

(3)
≤ f(x)− γη

(
1− ηβL

2

)
‖g‖22 .

Proof of Theorem 12

Proof. Since f is µ-strongly convex,
∥∥∇f(xk)

∥∥2
2
≥ 2µ(f(xk) − f(x?)). Combining this with

Lemma 17 applied to x = xk and g = ∇f(xk), we get

E
[
f
(
xk − ηC(∇f(xk))

)]
− f(x?) ≤ f(xk)− f(x?)− µγη(2− ηβL)(f(xk)− f(x?))

= (1− µγη(2− ηβL)) (f(xk)− f(x?)).

E.3 Analysis for C ∈ B3(δ)

Lemma 18. Assume f is L-smooth. Let C ∈ B3(δ). Then as long as 0 ≤ η ≤ 1
L , for each x ∈ Rd

we have
E [f (x− ηC(∇f(x)))] ≤ f(x)− η

2δ
‖∇f(x)‖22 .

Proof. Letting g = ∇f(x), note that for any stepsize η ∈ R we have

E [f (x− ηC(g))] ≤ E

[
f(x) + 〈g,−ηC(g)〉+

L

2
‖−ηC(g)‖22

]
= f(x)− η〈E [C(g)] , g〉+

η2L

2
E
[
‖C(g)‖22

]
. (21)

Since C ∈ B3(δ), we have E
[
‖C(g)− g‖22

]
≤
(
1− 1

δ

)
‖g‖22. Expanding the square, we get

‖g‖22 − 2E [〈C(g), g〉] + E
[
‖C(g)‖22

]
≤
(

1− 1

δ

)
‖g‖22 .

Subtracting ‖g‖22 from both sides, and multiplying both sides by η
2 (now we assume that η > 0), we

get
−η〈E [C(g)] , g〉+

η

2
E
[
‖C(g)‖22

]
≤ − η

2δ
‖g‖22 .

Assuming that ηL ≤ 1, we can combine this with (21) and the lemma is proved.

Proof of Theorem 13

Proof. Since f is µ-strongly convex,
∥∥∇f(xk)

∥∥2
2
≥ 2µ(f(xk) − f(x?)). Combining this with

Lemma 18 applied to x = xk and g = ∇f(xk), we get

E
[
f
(
xk − ηC(∇f(xk))

)]
− f(x?) ≤ f(xk)− f(x?)− ηµ

δ
(f(xk)− f(x?))

=
(

1− ηµ

δ

)
(f(xk)− f(x?)).
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F Proofs for Section 5

F.1 Failure of DCGD with biased compressors: an extension to Example 1

Here we extend the example given in Section 5 showing a potential divergence of DCGD with biased
compression. Fix the dimension d ≥ 3 and let n =

(
d
d1

)
be the number of nodes, where d1 <

⌈
d
2

⌉
and d2 = d− d1 > d1. Choose positive numbers b, c > 0 such that

−bd1 + cd2 = 1, b > c+ 1.

One possible choice could be b = d2 + d2
d1
, c = d1 + 1

d2
+ 1. Define vectors aj ∈ Rd, j ∈ [n] via

aj =
∑
i∈Ij

(−b)ei +
∑

i∈[d]\Ij

cei,

where sets Ij ⊂ [d], j ∈ [n] are all possible d1-subsets of [d] enumerated in some way. Define

fj(x) = 〈aj , x〉2 +
1

2
‖x‖22 , j ∈ [n]

and let the initial point be x0 = te, t > 0, where e =
∑d
i=1 ei is the vector of all 1s. Then

∇fj(x0) = 2〈aj , x0〉 · aj + x0 = 2t(−bd1 + cd2) · aj + te = t(2aj + e).

Since |2(−b) + 1| > |2c+ 1|, then using the Top-d1 compressor, we get

C(∇fj(x0)) = −t(2b− 1)
∑
i∈Ij

ei.

Therefore, the next iterate of DCGD is

x1 = x0 − η 1

n

n∑
j=1

C(∇fj(x0)) = x0 +
ηt(2b− 1)

n

n∑
j=1

∑
i∈Ij

ei

= x0 +
η(2b− 1)

n

(
d

d1 − 1

)
x0 =

(
1 +

η(2b− 1)d1
d2 + 1

)
x0,

which implies

xk =

(
1 +

η(2b− 1)d1
d2 + 1

)k
x0.

Since η > 0 and b > 1, the entries of xk diverge exponentially fast to +∞.

F.2 Proof of Theorem 14 (Main)

In this section, we include our analysis for the Distributed SGD with biased compression. Our
analysis is closely related to the analysis of [25].

We start with the definition of some auxiliary objects:
Definition 5. The sequence {ak}k≥0 of positive values is τ -slow decreasing for parameter τ :

ak+1 ≤ ak, ak+1

(
1 +

1

2τ

)
≥ ak, ∀k ≥ 0 (22)

The sequence {ak}k≥0 of positive values is τ -slow increasing for parameter τ :

ak+1 ≥ ak, ak+1 ≤ ak
(

1 +
1

2τ

)
, ∀k ≥ 0 (23)

And let:

x̃k = xk − 1

n

n∑
i=1

eki , ∀k ≥ 0 (24)
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gk =
1

n

n∑
i=1

gki (25)

It is easy to see:

x̃k+1 = xk+1 − 1

n

n∑
i=1

ek+1
i

Alg. 1
=

(
xk − 1

n

n∑
i=1

g̃ki

)
−

(
1

n

n∑
i=1

[eki + ηkgki − g̃ki ]

)

= x̃k − ηk

n

n∑
i=1

gki (26)

Lemma 19. If ηk ≤ 1
4L(1+2B/n) , ∀k ≥ 0, then for {x̃k}k≥0 defined as in (24),

E
[∥∥x̃k+1 − x∗

∥∥2
2

]
≤

(
1− µηk

2

)
E
[∥∥x̃k − x∗∥∥2

2

]
− ηk

2
E
[
f(xk)− f∗

]
+ 3LηkE

[∥∥xk − x̃k∥∥2
2

]
+ (ηk)2

C + 2BD

n
(27)

Proof. We consider the following equalities, using the relationship between x̃k+1 and x̃k:

∥∥x̃k+1 − x∗
∥∥2
2

(25),(26)
=

∥∥x̃k − x∗∥∥2
2
− 2ηk〈gk, x̃k − x∗〉+ (ηk)2

∥∥gk∥∥2
2

=
∥∥x̃k − x∗∥∥2

2
− 2ηk〈gk, xk − x∗〉+ (ηk)2

∥∥gk∥∥2
2

+ 2ηk〈gk, xk − x̃k〉.

Taking the conditional expectation conditioned on previous iterates, we get

E
[∥∥x̃k+1 − x∗

∥∥2
2

]
=

∥∥x̃k − x∗∥∥2
2
− 2ηk〈E

[
gk
]
, xk − x∗〉+ (ηk)2 · E

[∥∥gk∥∥2
2

]
+ 2ηk〈E

[
gk
]
, xk − x̃k〉

(25)
=

∥∥x̃k − x∗∥∥2
2
− 2ηk〈E

[
gk
]
, xk − x∗〉

+(ηk)2 · E

∥∥∥∥∥∇f(xk) +
1

n

n∑
i=1

ξki

∥∥∥∥∥
2

2

+ 2ηk〈E
[
gk
]
, xk − x̃k〉

=
∥∥x̃k − x∗∥∥2

2
− 2ηk〈E

[
gk
]
, xk − x∗〉

+(ηk)2 · E

∥∥∇f(xk)
∥∥2
2

+ 2〈∇f(xk),
1

n

n∑
i=1

ξki 〉+

∥∥∥∥∥ 1

n

n∑
i=1

ξki

∥∥∥∥∥
2

2

+ 2ηk〈E
[
gk
]
, xk − x̃k〉.

Given the unbiased stochastic gradient (E
[
ξki
]

= 0):

E
[∥∥x̃k+1 − x∗

∥∥2
2

]
=

∥∥x̃k − x∗∥∥2
2
− 2ηk〈∇f(xk), xk − x∗〉

+(ηk)2
∥∥∇f(xk)

∥∥2
2

+ (ηk)2 · E

∥∥∥∥∥ 1

n

n∑
i=1

ξki

∥∥∥∥∥
2

2

+ 2ηk〈∇f(xk), xk − x̃k〉
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Using that ξki mutually independent and E
[
ξki
]

= 0 we have:

(14)
≤

∥∥x̃k − x∗∥∥2
2
− 2ηk〈∇f(xk), xk − x∗〉

+(ηk)2 ·
∥∥∇f(xk)

∥∥2
2

+ (ηk)2 · 1

n2

n∑
i=1

E
[∥∥ξki ∥∥22]+ 2ηk〈∇f(xk), xk − x̃k〉

(8)
≤

∥∥x̃k − x∗∥∥2
2
− 2ηk〈∇f(xk), xk − x∗〉

+(ηk)2 ·
∥∥∇f(xk)

∥∥2
2

+
(ηk)2

n2

n∑
i=1

[
B
∥∥∇fi(xk)

∥∥2
2

]
+

(ηk)2

n
C

+2ηk〈∇f(xk), xk − x̃k〉
(11)
≤

∥∥x̃k − x∗∥∥2
2
− 2ηk〈∇f(xk), xk − x∗〉

+(ηk)2 · 2L(f(xk)− f(x∗)) +
(ηk)2

n2

n∑
i=1

[
B
∥∥∇fi(xk)

∥∥2
2

]
+

(ηk)2

n
C

+2ηk〈∇f(xk), xk − x̃k〉. (28)

All fi are L-smooth and µ-strongly convex, thus f is L-smooth and µ-strongly convex. We can

rewrite 1
n

n∑
i=1

∥∥∇fi(xk)
∥∥2
2
:

1

n

n∑
i=1

∥∥∇fi(xk)
∥∥2
2

=
1

n

n∑
i=1

∥∥∇fi(xk)−∇fi(x∗) +∇fi(x∗)
∥∥2
2

(14)
≤ 2

n

n∑
i=1

(∥∥∇fi(xk)−∇fi(x∗)
∥∥2
2

+ ‖∇fi(x∗)‖22
)

(10)
≤ 2

n

n∑
i=1

[
2L
(
fi(x

k)− fi(x∗)− 〈∇fi(x∗), xk − x∗〉
)

+ ‖∇fi(x∗)‖22
]
.

Using definition of D = 1
n

∑n
i=1 ‖∇fi(x∗)‖

2
2:

1

n

n∑
i=1

∥∥∇fi(xk)
∥∥2
2
≤ 4L

(
f(xk)−∇f(x∗)

)
+ 2D (29)

Substituting (29) to (28):

E
[∥∥x̃k+1 − x∗

∥∥2
2

]
=

∥∥x̃k − x∗∥∥2
2
− 2ηk〈∇f(xk), xk − x∗〉+ (ηk)2 · 2L

(
1 +

2B

n

)
(f(xk)− f(x∗))

+(ηk)2
C + 2BD

n
+ 2ηk〈∇f(xk), xk − x̃k〉 (30)

By (9) we have for f :

−2〈∇f(xk), xk − x∗〉 ≤ −µ
∥∥xk − x∗∥∥2

2
− 2(f(xk)− f∗). (31)

Using (12) with ξ = 1/2L and L-smothness of f (11):

2〈∇f(xk), x̃k − xk〉 ≤ 1

2L

∥∥∇f(xk)
∥∥2
2

+ 2L
∥∥xk − x̃k∥∥2

2
≤ f(xk)− f∗ + 2L

∥∥xk − x̃k∥∥2
2
. (32)

By (14) for
∥∥x̃k − x∗∥∥2

2
, we get:

−
∥∥xk − x∗∥∥2

2
≤ −1

2

∥∥x̃k − x∗∥∥2
2

+
∥∥xk − x̃k∥∥2

2
. (33)
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Plugging (31), (32), (33) into (30):

∥∥x̃k+1 − x∗
∥∥2
2
≤

(
1− µηk

2

)∥∥x̃k − x∗∥∥2
2
− ηk

[
1− ηk · 2L

(
1 +

2B

n

)]
(f(xk)− f∗)

+ηk(2L+ µ)
∥∥xk − x̃k∥∥2

2
+ (ηk)2

C + 2BD

n

The lemma follows by the choice ηk ≤ 1
4L(1+2B/n) and L ≥ µ.

Lemma 20. ηk ≤ 1
14(2δ+B)L , ∀k ≥ 0 and {(ηk)2}k≥0 – 2δ-slow decreasing. Then

E

∥∥∥∥∥ 1

n

n∑
i=1

ek+1
i

∥∥∥∥∥
2

2

 ≤ (1− 1/δ)

49L(2δ +B)

k∑
j=0

[(
1− 1

4δ

)k−j
(f(xj)− f(x∗))

]
+ ηk

2(δ − 1)

7L

(
2D +

C

2δ +B

)
. (34)

Furthermore, for any 4δ-slow increasing non-negative sequence {wk}k≥0 it holds:

3L ·
K∑
k=0

wk · E

∥∥∥∥∥ 1

n

n∑
i=1

eki

∥∥∥∥∥
2

2

 ≤ 1

4

K∑
k=0

wk(E
[
f(xk)

]
− f(x∗)) +

(
3δD +

3C

4

) K∑
k=0

wkηk. (35)

Proof. We prove the first part of the statement:

E

∥∥∥∥∥ 1

n

n∑
i=1

ek+1
i

∥∥∥∥∥
2

2

 (14)
≤ 1

n
E

[
n∑
i=1

∥∥ek+1
i

∥∥2
2

]

Alg. 1
=

1

n
E

[
n∑
i=1

∥∥eki + ηkgki − g̃ki
∥∥2
2

]
Alg. 1

=
1

n

n∑
i=1

E
[∥∥eki + ηkgki − C(eki + ηkgki )

∥∥2
2

]
(4)
≤ 1− 1/δ

n

n∑
i=1

E∇

[∥∥eki + ηkgki
∥∥2
2

]
=

1− 1/δ

n

n∑
i=1

E∇

[∥∥eki + ηk∇fi(xk) + ηkξki
∥∥2
2

]
Here we have taken into account that the operator of full expectation is a combination of operators
of expectation by the randomness of the operator and the randomness of the stochastic gradient, i.e.
E [·] = EC [E∇ [·]]. Given the unbiased stochastic gradient (E

[
ξki
]

= 0):

E

∥∥∥∥∥ 1

n

n∑
i=1

ek+1
i

∥∥∥∥∥
2

2

 ≤ 1− 1/δ

n

n∑
i=1

[∥∥eki + ηk∇fi(xk)
∥∥2
2

+ E∇

[∥∥ηkξki ∥∥22]]
(8)
≤ 1− 1/δ

n

n∑
i=1

[∥∥eki + ηk∇fi(xk)
∥∥2
2

+ (ηk)2
(
B
∥∥∇fi(xk)

∥∥2
2

+ C
)]
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Using (13) with some ξ:

E

∥∥∥∥∥ 1

n

n∑
i=1

ek+1
i

∥∥∥∥∥
2

2

 ≤ 1

n
E

[
n∑
i=1

∥∥ek+1
i

∥∥2
2

]

≤
1− 1

δ

n

n∑
i=1

[
(1 + ξ)

∥∥eki ∥∥22 + (ηk)2
(

1 +
1

ξ

)∥∥∇fi(xk)
∥∥2
2

+ (ηk)2B
∥∥∇fi(xk)

∥∥2
2

+ (ηk)2C

]

=

(
1− 1

δ

)[
(1 + ξ)

(
1

n

n∑
i=1

∥∥eki ∥∥22
)

+ (ηk)2
(

1 +
1

ξ
+B

)(
1

n

n∑
i=1

∥∥∇fi(xk)
∥∥2
2

)
+ (ηk)2C

]
(29)
≤

(
1− 1

δ

)[
(1 + ξ)

(
1

n

n∑
i=1

∥∥eki ∥∥22
)]

+

(
1− 1

δ

)[
(ηk)2

(
1 +

1

ξ
+B

)(
4L(f(xk)− f(x∗)) + 2D

)
+ (ηk)2C

]
Using the recurrence for 1

n

n∑
i=1

∥∥eki ∥∥22 , and let ξ = 1
2(δ−1) , then (1+1/ξ) ≤ 2δ, and (1−1/δ)(1+ξ) =

(1− 1/2δ) we have

E

∥∥∥∥∥ 1

n

n∑
i=1

ek+1
i

∥∥∥∥∥
2

2

 ≤ 1

n
E

[
n∑
i=1

∥∥ek+1
i

∥∥2
2

]

≤
(

1− 1

δ

) k∑
j=0

(ηj)2
[(

1− 1

δ

)
(1 + ξ)

]k−j (
1 +

1

ξ
+B

)(
4L(E

[
f(xj)

]
− f(x∗)) + 2D

)
+

(
1− 1

δ

) k∑
j=0

(ηj)2
[(

1− 1

δ

)
(1 + ξ)

]k−j
C

≤
(

1− 1

δ

) k∑
j=0

(ηj)2
(

1− 1

2δ

)k−j (
(2δ +B)

(
4L(E

[
f(xj)

]
− f(x∗)) + 2D

)
+ C

)
.

For 2δ-slow decreasing {(ηk)2}k≥0 by definition (22) we get that (ηj)2 ≤ (ηk)2
(
1 + 1

4δ

)k−j
. Due

to the fact that (1− 1/2δ)(1 + 1/4δ) ≤ (1− 1/4δ), we have:

E

∥∥∥∥∥ 1

n

n∑
i=1

ek+1
i

∥∥∥∥∥
2

2

 ≤ 1

n
E

[
n∑
i=1

∥∥ek+1
i

∥∥2
2

]

≤
(

1− 1

δ

) k∑
j=0

(ηk)2
(

1 +
1

4δ

)k−j (
1− 1

2δ

)k−j
(2δ +B)

(
4L(E

[
f(xj)

]
− f(x∗)) + 2D

)
+

(
1− 1

δ

) k∑
j=0

(ηk)2
(

1 +
1

4δ

)k−j (
1− 1

2δ

)k−j
C

≤ (ηk)2
(

1− 1

δ

)
(2δ +B)

k∑
j=0

[(
1− 1

4δ

)k−j
4L
(
E
[
f(xj)

]
− f(x∗)

)]

+ (ηk)2
(

1− 1

δ

)
4δ[C + 2D(2δ +B)] .

As the last step, we use formula for geometric progression in the following way:

k∑
j=0

(
1− 1

4δ

)k−j
=

k∑
j=0

(
1− 1

4δ

)j
≤
∞∑
j=0

(
1− 1

4δ

)j
= 4δ
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By observing that the choice of the stepsize ηk ≤ 1
14(2δ+B)L :

E

∥∥∥∥∥ 1

n

n∑
i=1

ek+1
i

∥∥∥∥∥
2

2

 ≤ 1

n
E

[
n∑
i=1

∥∥ek+1
i

∥∥2
2

]

≤ (1− 1/δ)

49L(2δ +B)

k∑
j=0

[(
1− 1

4δ

)k−j
(E
[
f(xj)

]
− f(x∗))

]
+ ηk

2(δ − 1)

7L

(
2D +

C

2δ +B

)
,

which concludes the proof of (34). For the second part, we use the previous results. Summing over
all k:
K∑
k=0

wk · E

∥∥∥∥∥ 1

n

n∑
i=1

eki

∥∥∥∥∥
2

2

 (34)
≤ (1− 1/δ)

49L(2δ +B)

K∑
k=0

wk
k−1∑
j=0

(
1− 1

4δ

)k−j−1 (
E
[
f(xj)

]
− f(x∗)

)
+

2(δ − 1)

7L

(
2D +

C

2δ +B

) K∑
k=0

wkηk−1

For 2δ-slow decreasing {(ηk)2}k≥0, it holds (ηk−1)2 ≤ (ηk)2
(
1 + 1

4δ

)
which follows from (22) and

ηk−1 ≤ ηk
(
1 + 1

4δ

)
and for 4δ-slow increasing {wk}k≥0 by (23) we have wk ≤ wk−j

(
1 + 1

8δ

)j
.

Then
K∑
k=0

wk · E

∥∥∥∥∥ 1

n

n∑
i=1

eki

∥∥∥∥∥
2

2

 (34)
≤ (1− 1/δ)

49L(2δ +B)

K∑
k=0

wk
k−1∑
j=0

(
1− 1

4δ

)k−j−1 (
E
[
f(xj)

]
− f(x∗)

)
+

2(δ − 1)

7L

(
2D +

C

2δ +B

)(
1 +

1

4δ

) K∑
k=0

wkηk

≤ (1− 1/δ)

49L(2δ +B)

K∑
k=0

k−1∑
j=0

wj
(

1 +
1

8δ

)k−j (
1− 1

4δ

)k−j (
E
[
f(xj)

]
− f(x∗)

)
+
δ − 1

2L

(
2D +

C

2δ +B

) K∑
k=0

wkηk

≤ (1− 1/δ)

49L(2δ +B)

K∑
k=0

k−1∑
j=0

wj

(
1− 1

8δ

)k−j (
E
[
f(xj)

]
− f(x∗)

)
+
δ − 1

2L

(
2D +

C

2δ +B

) K∑
k=0

wkηk

≤ (1− 1/δ)

49L(2δ +B)

K∑
k=0

wk
(
E
[
f(xk)

]
− f(x∗)

) ∞∑
j=0

(
1− 1

8δ

)j

+
δ − 1

2L

(
2D +

C

2δ +B

) K∑
k=0

wkηk .

Observing
∑∞
j=0(1− 1/8δ)j ≤ 8δ and using δ−1/2δ+B ≤ 1/2 concludes the proof.

Lemma 21 (Lemma 11, [25]). For decreasing stepsizes
{
ηk := 2

a(κ+k)

}
k≥0, and weights {wk :=

(κ+ k)}k≥0 for parameters κ ≥ 1, it holds for every non-negative sequence {rk}k≥0 and any a > 0,
c ≥ 0 that

ΨK :=
1

WK

K∑
k=0

(
wk

ηk
(
1− aηk

)
rk − wk

ηk
rk+1 + cηkwk

)
≤ aκ2r0

K2
+

4c

aK
,

where WK :=
∑K
k=0 w

k.
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Proof. We start by observing that

wk

ηk
(
1− aηk

)
rk =

a

2
(κ+ k)(κ+ k − 2)rk =

a

2

(
(κ+ k − 1)2 − 1

)
≤ a

2
(κ+ k − 1)2 . (36)

By plugging in the definitions of ηk and wk in ΨK , we end up with the following telescoping sum:

ΨK
(36)
≤ 1

WK

K∑
k=0

(a
2

(κ+ k − 1)2rk − a

2
(κ+ k)2rk+1

)
+

K∑
k=0

2c

aWK
≤ a(κ− 1)2r0

2WK
+

2c(K + 1)

aWK
.

The lemma now follows from (κ − 1)2 ≤ κ2 and WK =
∑K
k=0(κ + k) = (2κ+K)(K+1)

2 ≥
K(K+1)

2 ≥ K2

2 .

Lemma 22 (Lemma 12, [25]). For every non-negative sequence {rk}k≥0 and any parameters
d ≥ a > 0, c ≥ 0, K ≥ 0, there exists a constant η ≤ 1

d , such that for constant stepsizes
{ηk = η}k≥0 and weights wk := (1− aη)−(k+1) it holds

ΨK :=
1

WK

K∑
k=0

(
wk

ηk
(
1− aηk

)
rk − wk

ηk
rk+1 + cηkwk

)
= Õ

(
dr0 exp

[
−aK

d

]
+

c

aK

)
.

Proof. By plugging in the values for ηk and wk, we observe that we again end up with a telescoping
sum and estimate

ΨK =
1

ηWK

K∑
k=0

(
wk−1rk − wkrk+1

)
+

cη

WK

K∑
k=0

wk ≤ r0

ηWK
+ cη ≤ r0

η
exp [−aηK] + cη ,

where we used the estimate WK ≥ wK ≥ (1 − aη)−K ≥ exp[aηK] for the last inequality. The
lemma now follows by carefully tuning η.

Lemma 23 (Lemma 13, [25]). For every non-negative sequence {rk}k≥0 and any parameters d ≥ 0,
c ≥ 0, K ≥ 0, there exists a constant η ≤ 1

d , such that for constant stepsizes {ηk = η}k≥0 it holds:

ΨK :=
1

K + 1

K∑
k=0

(
(1− aηk)rk

ηk
− rk+1

ηk
+ cηk

)
≤ (d− a)r0

K + 1
+

2
√
cr0√

K + 1

Proof. For constant stepsizes ηt = η we can derive the estimate

ΨK =
1

η(K + 1)

K∑
k=0

(
(1− aη)rk − rk+1

)
+ cη ≤ (1− aη)r0

η(K + 1)
+ cη .

We distinguish two cases: if r0

c(K+1) ≤
1
d2 , then we chose the stepsize η =

√
r0

c(K+1) and get

ΨK ≤
√
r0

(K + 1)
(2 ·

√
c(K + 1)− a

√
r0) ,

on the other hand, if r0

c(K+1) >
1
d2 , then we choose η = 1

d and get

ΨK ≤ r0(d− a)

K + 1
+
c

d
≤ r0(d− a)

K + 1
+

√
cr0√
K + 1

,

which concludes the proof.

The proof of the main theorem follows
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Proof of the Theorem 14. It is easy to see that 1/14(2δ+B)L ≤ 1/4L(1+2B/n). This means that the
Lemma 19 is satisfied. With the notation rk := E

[∥∥x̃k+1 − x?
∥∥2
2

]
and sk := E

[
f(xk)

]
− f? we

have for any wk > 0:

wk

2
sk

(27)
≤ wk

ηk

(
1− µηk

2

)
rk − wk

ηk
rk+1 + ηkwk

C + 2BD

n
+ 3wkL · E

∥∥∥∥∥ 1

n

n∑
i=1

eki

∥∥∥∥∥
2

2

 .
Substituting (35) and summing over k we have:

1

2

K∑
k=0

wksk ≤
K∑
k=0

(
wk

ηk

(
1− µηk

2

)
rk − wk

ηk
rk+1 + ηkwkC̃

)
+

1

4

K∑
k=0

wksk .

where C̃ = C
(
1 + 1

n

)
+D

(
2B
n + 3δ

)
.

This can be rewritten as

1

WK

K∑
k=0

wksk ≤ 4

WK

K∑
k=0

(
wk

ηk

(
1− µηk

2

)
rk − wk

ηk
rk+1 + ηkwkC̃

)
.

First, when the stepsizes ηk = 4
µ(κ+k) , it is easy to see that ηk ≤ 1

14(2δ+B)L :

ηk ≤ η0 =
4

µκ
≤ 4

µ
· µ

56(2δ +B)L
=

1

14(2δ +B)L

Not difficult to check that {(ηk)2}k≥0 is 2δ slow decreasing:

(ηk+1)2

(ηk)2
=

(
κ+ k + 1

κ+ k

)2

≤
(

1 +
1

κ+ k

)2

≤
(

1 +
1

κ

)2

=

(
1 +

µ

56(2δ +B)L

)2

≤ 1 +
1

4δ

Furthermore, the weights {wk = κ+ k}k≥0 are 4δ-slow increasing:

wk+1

wk
=
κ+ k + 1

κ+ k
= 1 +

1

κ+ k
≤ 1 +

1

κ
= 1 +

µ

56(2δ +B)L
≤ 1 +

1

8δ
.

The conditions for Lemma 21 are satisfied, and we obtain the desired statement. For the second case,
the conditions of Lemma 22 are easy to check (see the previous paragraph). The claim follows by
this lemma. Finally, for the third claim, we invoke Lemma 23.

G Superiority of Biased Compressors Under Statistical Assumptions

(d) We ask the question: do biased compressors outperform their unbiased counterparts in theory, and
by how much? We answer this question by studying the performance of several compressors under
various synthetic and empirical statistical assumptions on the distribution of the entries of gradient
vectors which need to be compressed. We quantify the gains of the Top-k sparsifier when compared
against the unbiased Rand-k sparsifier, for example (see Section G).

Here we highlight some advantages of biased compressors by comparing them with their unbiased
cousins. We evaluate compressors by their average capacity of preserving the gradient information
or, in other words, by expected approximation error they produce. In the sequel, we assume that
gradients have i.i.d. coordinates drawn from some distribution.

G.1 Top-k vs Rand-k

We now compare two sparsification operators: Rand-k which is unbiased and which we denote as Ckrnd,
and Top-k which is biased and which we denote as Cktop. We define variance of the approximation
error of x via

ωkrnd(x) := E

[∥∥∥∥kdCkrnd(x)− x
∥∥∥∥2
2

]
=

(
1− k

d

)
‖x‖22
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and

ωktop(x) :=
∥∥Cktop(x)− x

∥∥2
2

=

d−k∑
i=1

x2(i)

and the energy “saving” via

skrnd(x) := ‖x‖22 − ω
k
rnd(x) = E

[∥∥∥∥kdCkrnd(x)

∥∥∥∥2
2

]
=
k

d
‖x‖22

and

sktop(x) := ‖x‖22 − ω
k
top(x) =

∥∥Cktop(x)
∥∥2
2

=

d∑
i=d−k+1

x2(i)

Expectations in these expressions are taken with respect to the randomization of the compression
operator rather than input vector x. Clearly, there exists x for which these two operators incur
identical variance, e.g. x1 = · · · = xd. However, in practice we apply compression to gradients x
which evolve in time, and which may have heterogeneous components. In such situations, ωktop(x)

could be much smaller than ωkrnd(x). This motivates a quantitative study of the average case behavior
in which we make an assumption on the distribution of the coordinates of the compressed vector.

Uniform and exponential distribution. We first show that in the case of uniform and exponentially
distributed entries, the difference is significant.
Lemma 24. Assume the coordinates of x ∈ Rd are i.i.d.
(a) If they follow uniform distribution over [0, 1], then

E
[
ωktop

]
E
[
ωkrnd

] =

(
1− k

d+ 1

)(
1− k

d+ 2

)
,

E
[
s1top

]
E [s1rnd]

=
3d

d+ 2
.

(b) If they follow standard exponential distribution, then

E
[
s1top

]
E [s1rnd]

=
1

2

d∑
i=1

1

i2
+

1

2

(
d∑
i=1

1

i

)2

≈ O(log2 d).

Proof. (a) As it was already mentioned, we have the following expressions for ωkrnd and ωktop:

ωkrnd(x) =

(
1− k

d

) d∑
i=1

x2i , ωktop(x) =

d−k∑
i=1

x2(i).

The expected variance E
[
ωkrnd

]
for Rand-k is easy to compute as all coordinates are independent

and uniformly distributed on [0, 1]:

E
[
x2i
]
≡
∫
[0,1]d

x2i dx =

∫ 1

0

x2i dxi =
1

3
, (37)

which implies

E
[
ωkrnd(x)

]
=

(
1− k

d

) d∑
i=1

E
[
x2i
]

=

(
1− k

d

)
d

3
=
d− k

3
. (38)

In order to compute the expected variance E
[
ωktop

]
for Top-k, we use the following formula from

order statistics2 (see e.g. [33])

E
[
x2(i)

]
≡
∫
[0,1]d

x2(i) dx =
Γ(i+ 2)Γ(d+ 1)

Γ(i)Γ(d+ 3)
=

i(i+ 1)

(d+ 1)(d+ 2)
, (39)

2see https://en.wikipedia.org/wiki/Order_statistic, https://www.sciencedirect.com/
science/article/pii/S0167715212001940
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from which we derive

E
[
ωktop

]
=

d−k∑
i=1

E
[
x2(i)

]
=

1

(d+ 1)(d+ 2)

d−k∑
i=1

i(i+ 1)

=
1

(d+ 1)(d+ 2)
· (d− k)(d− k + 1)(d− k + 2)

3

=
d− k

3

(
1− k

d+ 1

)(
1− k

d+ 2

)
.

(40)

Combining (38) and (40) completes the first relation. Thus, on average (w.r.t. uniform distribution)
Top-k has roughly (1− k/d)

2 times less variance than Rand-k.

For the second relation, we use (37) and (39) for i = d and get

E
[
s1top(x)

]
E [s1rnd(x)]

=
E
[
x2(d)

]
E [x2d]

=

d(d+1)
(d+1)(d+2)

1
3

=
3d

d+ 2
.

Clearly, one can extend this for any k ∈ [d].

(b) Recall that for the standard exponential distribution (with λ = 1) probability density function
(PDF) is given as follows:

φ(t) = e−t, t ∈ [0,∞).

Both mean and variance can be shown to be equal to 1. The expected saving E
[
s1rnd

]
can be

computed directly:
E
[
s1rnd(x)

]
= E

[
x2d
]

= Var [xd] + E [xd]
2

= 2.

To compute the expected saving E
[
s1top(x)

]
= E

[
x2(d)

]
we prove the following lemma:

Lemma 25. Let x1, x2, . . . , xd be an i.i.d. sample from the standard exponential distribution and

yi := (d− i+ 1)(x(i) − x(i−1)), 1 ≤ i ≤ d,

where x(0) := 0. Then y1, y2, . . . , yd is an i.i.d. sample from the standard exponential distribution.

Proof. The joint density function of x(1), . . . , x(d) is given by (see [33])

φx(1),...,x(d)
(u1, . . . , ud) = d!

d∏
i=1

φ(ui) = d! exp

(
−

d∑
i=1

ui

)
, 0 ≤ u1 ≤ . . . ≤ ud <∞.

Next we express variables x(i) using new variables yi

x(1) =
y1
d
, x(2) =

y1
d

+
y2

d− 1
, . . . , x(d) =

y1
d

+
y2

d− 1
+ . . .+ yd,

with the transformation matrix

A =



1
d 0 . . . 0

1
d

1
d−1 . . . 0

...
...

. . .
...

1
d

1
d−1 . . . 1


Then the joint density ψy1,...,yd(u) = ψy1,...,yd(u1, . . . , ud) of new variables y1, . . . , yd is given as
follows

ψy1,...,yd(u) =
φx(1),...,x(d)

(Au)

|detA−1|
= |detA| · φx(1),...,x(d)

(Au)
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Notice that
d∑
i=1

ui =
d∑
i=1

(Au)i and |detA| = 1/d!. Hence

ψy1,...,yd(u) = exp

(
−

d∑
i=1

ui

)
, 0 ≤ u1 ≤ . . . ≤ ud ≤ ∞,

which means that variables y1, . . . yd are independent and have standard exponential distribution.

Using this lemma we can compute the mean and the second moment of x(d) =
∑d
i=1

yi
d−i+1 as

follows

E
[
x(d)

]
=

d∑
i=1

E

[
yi

d− i+ 1

]
=

d∑
i=1

E [yi]

d− i+ 1
=

d∑
i=1

1

i
,

Var [x(d)] =

d∑
i=1

Var

[
yi

d− i+ 1

]
=

d∑
i=1

Var [yi]

(d− i+ 1)2
=

d∑
i=1

1

i2
,

from which we conclude the lemma as

E
[
s1top(x)

]
= E

[
x2(d)

]
= Var [x(d)] + E

[
x(d)

]2
=

d∑
i=1

1

i2
+

(
d∑
i=1

1

i

)2

≈ O(log2 d).
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