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Abstract

The wide-spread availability of rich data has fueled the growth of machine learning
applications in numerous domains. However, growth in domains with highly-
sensitive data (e.g., medical) is largely hindered as the private nature of data
prohibits it from being shared. To this end, we propose Gradient-sanitized Wasser-
stein Generative Adversarial Networks (GS-WGAN), which allows releasing a
sanitized form of the sensitive data with rigorous privacy guarantees. In contrast to
prior work, our approach is able to distort gradient information more precisely, and
thereby enabling training deeper models which generate more informative samples.
Moreover, our formulation naturally allows for training GANs in both centralized
and federated (i.e., decentralized) data scenarios. Through extensive experiments,
we find our approach consistently outperforms state-of-the-art approaches across
multiple metrics (e.g., sample quality) and datasets.

1 Introduction

Releasing statistical and sensory data to a broad community has contributed towards advances in
numerous machine learning (ML) techniques e.g., object recognition (ImageNet [10]), language
modeling (RCV [22]]), recommendation systems (Netflix ratings [6]). However, in many sensitive
domains (e.g., medical, financial), similar advances are often held back as the private nature of
collected data prohibits release in its original form. Privacy-preserving data publishing [} 12} [15]
provides a reasonable solution, where only a sanitized form of the original data (with rigorous privacy
guarantees) is publicly released.

Traditionally, sanitization is performed in a differentially private (DP) framework [11]. The saniti-
zation method employed is often hand-crafted for the given input data [26, 28] 42]] and the specific
data-dependent task the sanitized data is intended for (e.g., answering linear queries) [[7 13} |19, [34].
As a result, such sanitization techniques greatly restrict the expressiveness of the released data
distribution and fail to generalize to novel tasks unanticipated by the publisher. Instead, recent
privacy-preserving techniques [5} 140, 41} 43] build on top of successes in generative adversarial
network (GANSs) [[L6] literature, to generate synthetic data faithful to the original input distribution.
Specifically, GANs are trained using a privacy-preserving algorithm (e.g., using DP-SGD [1]]) and
demonstrate promising results in modeling a variety of real-world high-dimensional data distributions.
Common to most privacy-preserving training algorithms for neural network models is manipulating
the gradient information generated during backpropagation. Manipulation most commonly involves
clipping the gradients (to bound sensitivity) and adding calibrated random noise (to introduce stochas-
ticity). Although recent techniques that employ such an approach demonstrate reasonable success,
they are largely limited to shallow networks and fail to sufficiently capture the sample quality of the
original data.

In this paper, towards the goal of a generative model capable of synthesizing high-quality samples
in a privacy-preserving manner, we propose a differentially private GAN. We first identify that in
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such a data-publishing scenario, only a subset of the trained model (specifically the generator) and its
parameters need to be publicly-released. This insight allows us to surgically manipulate the gradient
information during training, and thereby allowing more meaningful gradient updates. By coupling
the approach with a Wasserstein [2]] objective with gradient-penalty term [[17]], we further improve
the amount of gradient information flow during training. The new objective additionally allows us
to precisely estimate the gradient norms and analytically determine the sensitivity values. As an
added benefit, we find our approach bypasses an intensive and fragile hyper-parameter search for
DP-specific hyperparameters (particularly clipping values).

Contributions. (i) A novel gradient-sanitized Wasserstein GAN (GS-WGAN), which is capable
of generating high-dimensional data with DP guarantee; (ii) Our approach naturally extends to both
centralized and decentralized datasets. In the case of decentralized scenarios, our work can provide
user-level DP guarantee [[24]] under an untrusted server; (iii) Extensive evaluations on various datasets
demonstrate that our method significantly improves the sample quality of privacy-preserving data
over state-of-the-art approaches.

2 Related Work

We review several generative models in the area of differential privacy, as well as their relations to
our work.

DP-SGD GAN. Training GANs via DP-SGD [} 15, 136/ 140} 43]] has proven effective in generating
high-dimensional sanitized data. However, DP-SGD relies on carefully tuning of the clipping bound
of gradient norm, i.e., the sensitivity value. Specifically, the optimal clipping bound varies greatly with
the model architecture and the training dynamics, making the implementation of DP-SGD difficult.
Unlike DP-SGD, our framework provides precise estimation of the sensitivity value, avoiding the
intensive search of hyper-parameters.

PATE. Private Aggregation of Teacher Ensembles (PATE) is recently adapted to generative models
and two main approaches were studied: PATE-GAN [41] and G-PATE [27]]. PATE-GAN trained
multiple teacher discriminators on disjoint data partitions together with a student discriminator. In
contrast, we consider a simplified model without a student discriminator.

G-PATE [27] is similar to our work in the sense that, both works trained the discriminator non-
privately while only training the generator with DP guarantee, and both sanitized gradients that the
generator received from the discriminator. However, G-PATE suffers from two main limitations:
(i) gradients need to be discretized by using manually selected bins in order to suit for the PATE
framework and (if) high-dimensional gradients in the PATE framework bring high privacy costs and
thus dimension reduction techniques are required. Our framework can effectively avoid these two
limitations and achieve better sample quality due to the novel gradient sanitation, see our experiments.

Fed-Avg GAN [3]. While many works focus on centralized setting, the decentralized case has
rarely been studied. To address this, Federated Average GAN (Fed-Avg GAN) proposed to adapt
GAN training by using the DP-Fed-Avg [29] algorithm, providing user-level DP guarantee under
trusted server. In comparison with Fed-Avg GAN that merely works on decentralized data, our work
can tackle both centralized and decentralized data using a single framework. Note that Fed-Avg
sanitized parameter gradients of the discriminator in a similar way to DP-SGD, it also suffers from
the difficulty of turning hyper-parameters.

3 Background

DP provides rigorous privacy guarantees for algorithms while allowing for quantitative privacy
analysis. We below present several definitions and theorems that will be used in this work.

Definition 3.1. (Differential Privacy (DP) [11]) A randomized mechanism M with range R is
("; )-DP,if .

PriM(s)20] e" Pr[M(s") 2 0]+ (1)
holds for any subset of outputs O R and for any adjacent datasets S and S’, where S and S° differ
from each other with only one training example. M is the GAN training algorithm in our case, "
corresponds to the upper bound of privacy loss, and is the probability of breaching DP constraints.



De nition 3.2. (Rényi Differential Privacy (RDP)31]) A randomized mechanisid is( ;" )-RDP
with order , if

" #
1 PrM(S)=x] !

D (M (S)kM (S9) = 1109Exm (s) Pr[M (S9 = x]

! @)

holds for any adjacent datas&sndS® whereD (PkQ) = Lllog Ex ol(P(x)=Q(x)) ]denotes

the Rényi divergence. Moreover(a" )-RDP mechanisnV is also(" + 'Oglz ; )-DP.

In contrast to DP, RDP provides convenient composition properties to accumulate privacy cost over a
sequence of mechanisms.

Theorem 3.1. (Composition) For a segsience of mechanidtg; :::;;M ¢ s.t. M j is (;" {)-RDP
8i, the compositioM ; 0 M ¢is(; ;"i)-RDP.

De nition 3.3. (Gaussian Mechanisrii4, [31]) Letf : X ! RY be an arbitraryd-dimensional
function with sensitivity being

2f = max ki (S) f(SYkz 3)
over all adjacent datase$sandS°. The Gaussian Mechaniskh , parameterized by, adds noise

into the output,i.e.,
M (x)=f(x)+ N(0; 2I): (4)

M is(; —2—)-RDP.
Theorem 3.2. (Post-processindld]) If M satis es("; )-DP,F M will satisfy ("; )-DP for any
functionF with denoting the composition operator.

4 Proposed Method

Generative Adversarial Networks (GANSs) [16]. Our approach models the underlying (private)

data distribution using a generative neural network, building on top of recent successes of GANSs.
GANSs (see Fig[ 1(#)) formulate the task of sample generation as a zero-sum two-player game, between
two neural network models: discriminatbrand generato®&. The discriminatoD is rewarded for
correctly classifying whether a given sample is “real’ (i.e., from the input data distribution) or “fake'
(generated by the generator). In contrast, the task of the gen&aqgiven some random noigg

to generate samples which fool the discriminator (i.e., causes misclassi cations). After training the
models in an adversarial manner, the discriminator is discarded and the generator is used as a proxy
to draw samples from the original distribution.

Differentially Private GANs. Releasing the generator as a substitute for the original training data
distribution entails privacy risks. Consequently, along the lines of recent WBp&6[40, 43], our

goal is instead to train the GAN in a privacy-preserving manner, such that any privacy leakage upon
disclosing the generator is bounded. A simple approach towards the goal is replacing the typical
training procedure (SGD) with a differentially private variant (DP-S@D &nd thereby limiting

the contribution of a particular training example in the nal trained model. DP-SGD enforces the
desired privacy requirement Iy clipping the gradientg; to have arL ,-norm of C at each training

step; andii) sampling random noise and adding it to the gradients, before performing descent on the
trained parameters:

g =1 L(ob: o) (gradient) (5)
0V =M ¢ (g) = clip(g®;C)+ N (0; 2C?) (sanitization mechanism (6)
(t+) .= () o (gradient descent step)  (7)

While such an approach provides rigorous privacy guarantees, there are multiple shortc@inings:
the sanitization mechanisM .c , primarily due to clipping, signi cantly destroys the original
gradient information, and thereby affects utility; afil nding a reasonable clipping valu€

in the mechanism to balance utility with privacy is especially challenging. In particular, as the
gradient norms exhibit a heavy-tailed distribution, choosing a clipping value requires an exhaustive



(a) Vanilla GAN (b) GS-WGAN (c) Fed-GS-WGAN
(Without privacy barrier) (Ours, with privacy barrier) (Ours, in a Federated setup)

Figure 1: Approach outline. Our gradient sanitization scheme ensures DP training of the generator.

search. Moreover, since the clipping value is extremely sensitive to many other hyperparameters (e.g.,
learning rate, architecture), it requires persistent re-tuning. Now, we discuss how we address these
shortcomings within our differentially private GAN approach.

Selectively applying Sanitization Mechanism.We begin by exploiting the fact that after training
the GAN, only the generat@? is released. Consequently, we can perform gradient steps by selectively
applying the sanitization mechanism only to the corresponding subset of paramgters

() = O gV (0% = gY; Discriminato) (8)
¢V =8 o of (86’ = M ¢ (g8"): Generatoy (9)

Apart from reducing the number of parameters sanitized, this also provides a bene t of more reliably
training a discriminator. In addition, we exploit the chain rule to further narrow the scope of the
sanitization mechanism:

0c =T osLe( 6)=Toc@E o)lc( c) J:G(z 6) (10)

=M. L G(z; 11

Oc C (lr G(z){ZG( Gi) l] 6 &Z G; (11)
gépstream J (Igcal

The above becomes easier to intuit by considering a typical loss furiciidns) = D(G(z; c)).

As illustrated in Fig. 1(b), Eq. 11 can then be considered as placing the privacy barrier for gradient
information backpropagating from the discriminator back to the generator, by applying the sanitization
mechanism ogg™*"**" Note that the second terrd £°) is the local generator jacobian computed
independent of training data, and hence does not require sanitization. Consequently, using a more
precise application of the sanitization mechanism on the gradient information, our goal here is to
maximally preserve the true gradient direction during training.

Bounding sensitivity using Wasserstein distance. To bound the sensitivity of the optimizer on
individual training examples, a key step in sanitization mechanismscifpt¢Eq. 6) the gradient
vectorg (Eqg. 5) before updating parameters (Eq. 7). Clipping is typically performéd imorm,

by replacing the gradient vectgrby g=max(1; jjgjj.=C) to ensurgjgjj. C. However, clipping

signi cantly destroys gradient information, as reasonable choic€s @f.g., 4 [L]) are signi cantly

lower than the gradient-norms observed (1210 in our case) when training neural networks
using standard loss functions. We propose to alleviate the issue by leveraging a more suitable loss
function, which generates bounded gradients (with norms close to 1) by construction. Speci cally,
we use as our loss the Wasserstein-1 mefjiofhich measures the statistical distance between the
real and generated data distributions. Hegge, the traiging process can be interpreted as minimizing
integral probability metrics (IPMsgup; 5 j ,, fdP v FdQj between realff) and generated

(Q) data distributions, whereé = ff : kf k. 1g/(i.e., the discriminator functiofi is 1-Lipschitz
continuous). It follows that the optimal discriminator has a gradient norm being 1 almost everywhere
underP andQ.

We incorporate the norm constraint into our training objective in the form of a gradient penalty term
[17]:

Ex p[DOOI+ Ex D]+ El(kr D( x+(1  ))kp 1)7] 12)
E. »,[D(G(2))] (13)

Lp
Le



(a) DP-SGD (b) DP-SGD (c) Ours (d) Ours

Figure 2: Gradient norm (before clipping) dynamics during the GAN training process. In the
experiment, the clipping bound is chosen to be 1 and 1.1 in 2(c) and 2(a) respectively.

whereLp andL ¢ represent training objectives for the discriminator and the generator, respectively.
is the hyper-parameter for weighting the gradient penalty ternPandkenotes the prior distribution

for the latent code variable. The variable U [0; 1], uniformly sampled fronf0; 1], regulates the

interpolation between real and generated samples.

As a natural consequence of the Wasserstein objective, reducing the norms of our target gradient
gePs"®aM Equation 11) during training is integrated in our training objective (last term in Equation 12).
Consequently, we observe signi cantly lower gradient norms during training (see Fig. 2(c)-2(d))
compared to training using a standard GAN loss (see Fig. 2(a)-2(b)). As a result, bounding the
sensitivity (i.e., gradient norms) is now largely delegated to our training procedure and clipping
using the sanitization mechanism destroys signi cantly less information. Additionally, by choosing a
clipping threshold ofc=1 (i.e.,jjgjj» 1), we obtain a xed and bounded sensitivity, and eliminate

the need for intensive hyper-parameter search for the optimal clipping threshold. Following this
normalization solution, a data-independent privacy cost can be determined by the following theorem,
whose proof is provided in Appendix.

Theorem 4.1. Each generator update step satis(es2B = 2)-RDP whereB is the batch size.

Privacy Ampli cation by Subsampling. A well-known approach for increasing privacy of a
mechanism is to apply the mechanism to a random subsample of the database, rather than on the
entire datasetq], 25, 38]. Intuitively, subsampling decreases the chances of leaking information about

a particular individual since nothing about that individual can be leaked once the individual is not
included in the subsample. In order to further reduce the privacy cost, we subsample the whole
dataset into different subsets and train multiple discriminators independently on each subset. At
each training step, the generator randomly queries one discriminator while the selected discriminator
updates its parameters on the generated data and its associated subsampled dataset.

Extending to Federated Learning. In addition to improving the privacy guarantee , performing
subsampling in our setup also naturally accommodates training a generative model on decentralized
datasets (with a discriminator trained on each disjoint data subset). Recently, Augensteig]et al. [
identi ed such techniques are extremely relevant when training models in a federated3®tup [

i.e., when the training data is private and distributed among edge devices. We outline our method
to train a differentially private GAN in a federated setup in Figure 1(c) and remark some subtle
differences between our approach and Fed-Avg GBMegre: (i) the discriminators are retained at

each client in our framework while they are shared between the server and client in Fed-Avg GAN;
(i) the gradients are sanitized at each client before sending to the server, with which we provide DP
guarantee even under an untrusted server. In contrast, the unprocessed information is accumulated
at the server before being sanitized in Fed-Avg GAN; @ild The gradients w.r.t. the samples are
transferred in GS-WGAN, while Fed-Avg GAN transfers the gradients w.r.t. discriminator network
parameters.

5 Experiment

Our approach allows to perform privacy-

preserving training of a GAN in federated IS™ _FID# epsilon? CT (oyte)#

setup, where sensitive user dataset is par Ao GAN 1088 21804 999 10F 204 107

titioned acrosK clients (e.g., edge de- '™ 11.25 6076 599 102  1:50 10

vices). Such a training scheme is useful te

privately inspect data for debugging. Foraple 1: Quanti?'fative Results on Federated EMNIST
( =1:15 10 3)
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