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* A symmetricity-based distribution-aware analysis on clipping bias

» Theoretical and empirical studies of the effect of gradient clipping in DP-SGD

A pre-clipping perturbation mechanism to reduce clipping bias in DP-SGD

* Private SGD with gradient clipping [1] works well in practice and the
clipping threshold is an important parameter to tune

Intuitively, gradient clipping may make Private SGD fail to converge

The effect of gradient clipping is not well-understood

Differentially-private SGD (DP-SGD) and gradient clipping

Update rule:
7y ~ N (0, 0%1), the noise to achieve privacy
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Gradient clipping:

clip(g, c) = g - max (1 i)

SGD with gradient clipping

To better understand convergence, first consider SGD with gradient
clipping (batch size=1):
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Convergence of SGD with gradient clipping

An intermediate convergence result:

Theorem. Let GG be the Lipschitz constant of V f such that ||V f(z) — Vf(y)| < G|z —y|,Vz,y.
For SGD with gradient clipping of threshold c, if we set o = % we have

I« . Dy G

where D = f(x1) — min, f(z

However, what can it say about convergence?
1. Convergence: We have E[(V f(x,). g:)] = |V f(x,)||* when clipping is always inactive (c is very large).

2. Divergence: The above may not hold when clipping can be active (c is relatively small).

Symmetricity helps convergence in SGD with gradient clipping

When distribution of stochastic gradient is symmetric:

Theorem. Assume p(&;) = p(—&;), gradient clipping with threshold c has the following properties.
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Convergence of SGD and DP-SGD with gradient clipping

SGD with gradient clipping:

Theorem. For SGD with gradient clipping, set o« = % Suppose true gradient noise distribution is
p, choose p; (&) = pi(—&), then the following holds:
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where by := [(V f(z), clip(V f(x:) + &, ¢)) (pe(&) — Pe(&e) ) dés. Clipping bias
(Symmetricity-

DP-SGD with gradient clipping:

. . . . . L. based)
Theorem. Let d be the dimensionality of the parameters. For DP-SGD with gradient clipping and
privacy parameters (€, 0), choose pi(&;) = pi(—&;), there exist uw and v such that
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cy) and W, .(p,p") is the Wasserstein distance between p and p’ with

where h.(y) = min(y? |
(v, clip(v +a,c)) — (v,clip(v+b,c))|and Dy > f(x1) —min, f(x).
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Gradient symmetricity

Per-sample gradient of a convnet projected into 2d space using a random
matrix (top row for MNIST, bottom row for CIFAR-10):
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Mitigate clipping bias by pre-clipping noise

DP-SGD with pre-clipping noise: Cr.i ~N(0,1)
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Theorem. Let g, = clip(Vf(xy) + & + k(. c) and ( ~ N (0, I). Then gradient clipping
algorithm has following properties:
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where (Té is the variance of the gradient noise &;.

Benefit of pre-clipping noise
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Run DP-SGD with pre-clipping noise
on a 10d synthetic dataset
with asymmetric gradient distribution
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